SAR EDDY DETECTION USING MASK-RCNN AND EDGE ENHANCEMENT

被引:11
|
作者
Zhang, Di [1 ]
Gade, Martin [2 ]
Zhang, Jianwei [1 ]
机构
[1] Univ Hamburg, Fachbereich Informat, Hamburg, Germany
[2] Univ Hamburg, Inst Meereskunde, Hamburg, Germany
基金
美国国家科学基金会;
关键词
SAR imagery; eddy detection; deep learning; Mask R-CNN;
D O I
10.1109/IGARSS39084.2020.9323808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this research is to detect ocean eddies automatically on Synthetic Aperture Radar (SAR) images. We develop a new approach using Mask Region-based Convolutional Neural Networks (Mask R-CNN) and edge enhancement. First, we use Canny edge detector to extract a wide range of edges in SAR images. Then we put both the edge detection results and the corresponding original images into a Mask R-CNN based model for learning, thereby strengthening edge information. The proposed framework has been trained on a sample dataset of Sentinel-1A SAR-C imagery of the Western Mediterranean Sea. Experimental results revealed that the proposed method improved the performance by 2.3% on the MS COCO metrics compared to the method without edge enhancement.
引用
收藏
页码:1604 / 1607
页数:4
相关论文
共 50 条
  • [41] Data mining approaches to pneumothorax detection: Integrating mask-RCNN and medical transfer learning techniques
    Chiwhane, Shwetambari
    Shrotriya, Lalit
    Dhumane, Amol
    Kothari, Sonali
    Dharrao, Deepak
    Bagane, Pooja
    METHODSX, 2024, 12
  • [42] 基于Mask-RCNN的图像篡改检测模型
    李士杰
    田秀霞
    计算机仿真, 2024, 41 (07) : 227 - 232
  • [43] 基于Mask-RCNN的服装识别与分割
    张泽堃
    张海波
    纺织科技进展, 2020, (06) : 20 - 24+32
  • [44] MASK-RCNN AND U-NET ENSEMBLED FOR NUCLEI SEGMENTATION
    Vuola, Aarno Oskar
    Akram, Saad Ullah
    Kannala, Juho
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 208 - 212
  • [45] Crop disease identification segmentation algorithm based on Mask-RCNN
    Bondre, Shweta
    Patil, Dipti
    AGRONOMY JOURNAL, 2024, 116 (03) : 1088 - 1098
  • [46] Road intersection identification from crowdsourced big trace data using Mask-RCNN
    Yang, Xue
    Hou, Liang
    Guo, Mingqiang
    Cao, Yanjia
    Yang, Mingchun
    Tang, Luliang
    TRANSACTIONS IN GIS, 2022, 26 (01) : 278 - 296
  • [47] Multiple-Object Detection and Segmentation Based on Deep Learning in High-Resolution Video Using Mask-RCNN
    Rajjak, Shaikh Shakil Abdul
    Kureshi, A. K.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (13)
  • [48] Semantic segmentation of the fish bodies in real environment using improved Mask-RCNN model
    Guo Y.
    Huang J.
    Deng B.
    Liu Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (23): : 162 - 169
  • [49] Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN
    Li, Yuan-Zhe
    Wang, Yi
    Fang, Kai-Bin
    Zheng, Hui-Zhong
    Lai, Qing-Quan
    Xia, Yong-Fa
    Chen, Jia-Yang
    Dai, Zhang-sheng
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2022, 27 (01)
  • [50] Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN
    Yu, Yang
    Zhang, Kailiang
    Yang, Li
    Zhang, Dongxing
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 163