SAR EDDY DETECTION USING MASK-RCNN AND EDGE ENHANCEMENT

被引:11
|
作者
Zhang, Di [1 ]
Gade, Martin [2 ]
Zhang, Jianwei [1 ]
机构
[1] Univ Hamburg, Fachbereich Informat, Hamburg, Germany
[2] Univ Hamburg, Inst Meereskunde, Hamburg, Germany
基金
美国国家科学基金会;
关键词
SAR imagery; eddy detection; deep learning; Mask R-CNN;
D O I
10.1109/IGARSS39084.2020.9323808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this research is to detect ocean eddies automatically on Synthetic Aperture Radar (SAR) images. We develop a new approach using Mask Region-based Convolutional Neural Networks (Mask R-CNN) and edge enhancement. First, we use Canny edge detector to extract a wide range of edges in SAR images. Then we put both the edge detection results and the corresponding original images into a Mask R-CNN based model for learning, thereby strengthening edge information. The proposed framework has been trained on a sample dataset of Sentinel-1A SAR-C imagery of the Western Mediterranean Sea. Experimental results revealed that the proposed method improved the performance by 2.3% on the MS COCO metrics compared to the method without edge enhancement.
引用
收藏
页码:1604 / 1607
页数:4
相关论文
共 50 条
  • [31] Extraction of building footprint using MASK-RCNN for high resolution aerial imagery
    Vincent, M. Jenila
    Varalakshmi, P.
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2024, 6 (07):
  • [32] Comparing Meanshift/SVM and Mask-RCNN algorithms for beach litter detection on UAVs images
    Sozio, Angelo
    Scarrica, Vincenzo M.
    Aucelli, Pietro P. C.
    Scicchitano, Giovanni
    Staiano, Antonino
    Rizzo, Angela
    2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA; LEARNING TO MEASURE SEA HEALTH PARAMETERS, METROSEA, 2023, : 483 - 487
  • [33] Aircraft Remote Sensing Image Target Detection Based on Improved Mask-RCNN Algorithm
    Zhang, Peng
    Zhang, Rui
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 464 - 469
  • [34] Instance-Based Segmentation for Boundary Detection of Neuropathic Ulcers Through Mask-RCNN
    Gamage, H. V. L. C.
    Wijesinghe, W. O. K. I. S.
    Perera, Indika
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 511 - 522
  • [35] Mask FORD-NET: Efficient Detection of Digital Image Forgery using Hybrid REG-NET based Mask-RCNN
    Whitin, Priscilla
    Sivakumar, S.
    Geetha, M.
    Devaki, M.
    Bhuvanesh, A.
    Balasubramaniyan, Kiruthiga
    Ahilan, A.
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (10) : 829 - 835
  • [36] 基于改进Mask-RCNN的路面裂缝检测
    游江川
    电视技术, 2022, 46 (06) : 7 - 9+19
  • [37] 基于双通道Mask-RCNN的手势识别
    王健
    孙荣春
    王莹
    长春理工大学学报(自然科学版), 2021, 44 (03) : 109 - 117
  • [38] Instance Segmentation of Concrete Defects Based on Improved Mask-RCNN
    Huang C.
    Xie X.
    Zhou Y.
    Li G.
    Bridge Construction, 2023, 53 (06) : 63 - 70
  • [39] Unsegmented Recognition of Handwritten Numerical Strings Based on Mask-RCNN
    Tao Zhiyong
    Han Yueming
    Sen, Lin
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)
  • [40] Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN
    Yuan-Zhe Li
    Yi Wang
    Kai-Bin Fang
    Hui-Zhong Zheng
    Qing-Quan Lai
    Yong-Fa Xia
    Jia-Yang Chen
    Zhang-sheng Dai
    European Journal of Medical Research, 27