The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise

被引:29
|
作者
Yang, DS [1 ]
机构
[1] Cent S Univ, Coll Math Sci & Computat Technol, Changsha 410083, Peoples R China
关键词
D O I
10.1063/1.1794365
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The asymptotic behavior of the stochastic Ginzburg-Landau equation is studied. We obtain the stochastic Ginzburg-Landau equation as a finite-dimensional random attractor. (C) 2004 American Institute of Physics.
引用
收藏
页码:4064 / 4076
页数:13
相关论文
共 50 条
  • [21] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    Science in China Series A: Mathematics, 2008, 51 : 955 - 964
  • [22] A stochastic Ginzburg-Landau equation with impulsive effects
    Nguyen Tien Dung
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (09) : 1962 - 1971
  • [23] The attractor of the stochastic generalized Ginzburg-Landau equation
    GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics
    2 The Graduate School of China Academy of Engineering Physics
    3 Department of Information and Computer Science
    Science in China(Series A:Mathematics), 2008, (05) : 955 - 964
  • [24] The attractor of the stochastic generalized Ginzburg-Landau equation
    Guo BoLing
    Wang GuoLian
    Li DongLong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (05): : 955 - 964
  • [25] Approximations of the solution of a stochastic Ginzburg-Landau equation
    Breckner, Brigitte E.
    Lisei, Hannelore
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 307 - 319
  • [26] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Chugreeva, Olga
    Melcher, Christof
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (01): : 113 - 143
  • [27] DYNAMICS OF NON-AUTONOMOUS FRACTIONAL STOCHASTIC GINZBURG-LANDAU EQUATIONS WITH MULTIPLICATIVE NOISE
    Lan, Yun
    Shu, Ji
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2409 - 2431
  • [28] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Olga Chugreeva
    Christof Melcher
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 113 - 143
  • [29] The exact solutions of the stochastic Ginzburg-Landau equation
    Mohammed, Wael W.
    Ahmad, Hijaz
    Hamza, Amjad E.
    ALy, E. S.
    El-Morshedy, M.
    Elabbasy, E. M.
    RESULTS IN PHYSICS, 2021, 23
  • [30] ASYMPTOTIC BEHAVIOR OF A NONISOTHERMAL GINZBURG-LANDAU MODEL
    Grasselli, Maurizio
    Wu, Hao
    Zheng, Songmu
    QUARTERLY OF APPLIED MATHEMATICS, 2008, 66 (04) : 743 - 770