A stochastic Ginzburg-Landau equation with impulsive effects

被引:17
|
作者
Nguyen Tien Dung [1 ]
机构
[1] FPT Univ, Dept Math, Hanoi, Vietnam
关键词
Stochastic Ginzburg-Landau equation; Impulses; Asymptotic behavior; COLORED NOISE; SYSTEMS;
D O I
10.1016/j.physa.2013.01.042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider a stochastic Ginzburg-Landau equation with impulsive effects. We first prove the existence and uniqueness of the global solution which can be explicitly represented via the solution of a stochastic equation without impulses. Then, based on our obtained result, we study the qualitative properties of the solution, including the boundedness of moments, almost surely exponential convergence and pathwise estimations. Finally, we give a first attempt to study a fractional version of impulsive stochastic Ginzburg-Landau equations. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1962 / 1971
页数:10
相关论文
共 50 条
  • [1] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    [J]. Science in China Series A: Mathematics, 2008, 51 : 955 - 964
  • [2] The attractor of the stochastic generalized Ginzburg-Landau equation
    GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics
    2 The Graduate School of China Academy of Engineering Physics
    3 Department of Information and Computer Science
    [J]. Science China Mathematics, 2008, (05) : 955 - 964
  • [3] Approximations of the solution of a stochastic Ginzburg-Landau equation
    Breckner, Brigitte E.
    Lisei, Hannelore
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 307 - 319
  • [4] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Chugreeva, Olga
    Melcher, Christof
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (01): : 113 - 143
  • [5] The attractor of the stochastic generalized Ginzburg-Landau equation
    Guo BoLing
    Wang GuoLian
    Li DongLong
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (05): : 955 - 964
  • [6] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Olga Chugreeva
    Christof Melcher
    [J]. Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 113 - 143
  • [7] The exact solutions of the stochastic Ginzburg-Landau equation
    Mohammed, Wael W.
    Ahmad, Hijaz
    Hamza, Amjad E.
    ALy, E. S.
    El-Morshedy, M.
    Elabbasy, E. M.
    [J]. RESULTS IN PHYSICS, 2021, 23
  • [8] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [9] PROXIMITY EFFECTS AND GENERALIZED GINZBURG-LANDAU EQUATION
    BLACKBURN, JA
    SMITH, HJT
    ROWELL, NL
    [J]. PHYSICAL REVIEW B, 1975, 11 (03): : 1053 - 1058
  • [10] Boundary effects in the complex Ginzburg-Landau equation
    Eguíluz, VM
    Hernández-García, E
    Piro, O
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11): : 2209 - 2214