Possibilistic induction in decision-tree learning

被引:0
|
作者
Hüllermeier, E [1 ]
机构
[1] Univ Marburg, Dept Math & Comp Sci, D-35032 Marburg, Germany
来源
MACHINE LEARNING: ECML 2002 | 2002年 / 2430卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a generalization of Ockham's razor, a widely applied principle of inductive inference. This generalization intends to capture the aspect of uncertainty involved in inductive reasoning. To this end, Ockham's razor is formalized within the framework of possibility theory: It is not simply used for identifying a single, apparently optimal model, but rather for concluding on the possibility of various candidate models. The possibilistic version of Ockham's razor is applied to (lazy) decision tree learning.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [1] DECISION-TREE LEARNING ALGORITHM
    Fresku, E.
    Anamali, A.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2014, 15 (02): : 686 - 696
  • [2] Characterization and parallelization of decision-tree induction
    Bradford, JP
    Fortes, JAB
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2001, 61 (03) : 322 - 349
  • [3] A Survey of Evolutionary Algorithms for Decision-Tree Induction
    Barros, Rodrigo Coelho
    Basgalupp, Marcio Porto
    de Carvalho, Andre C. P. L. F.
    Freitas, Alex A.
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2012, 42 (03): : 291 - 312
  • [4] Explanation of attribute relevance in decision-tree induction
    McSherry, D
    RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XVIII, 2002, : 39 - 52
  • [5] On the Use of Clustering in Possibilistic Decision Tree Induction
    Jenhani, Ilyes
    Benferhat, Salem
    Elouedi, Zied
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2009, 5590 : 505 - +
  • [6] Estimation of Distribution Algorithms for Decision-Tree Induction
    Cagnini, Henry E. L.
    Barros, Rodrigo C.
    Basgalupp, Marcio P.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 2022 - 2029
  • [7] A FURTHER COMPARISON OF SPLITTING RULES FOR DECISION-TREE INDUCTION
    BUNTINE, W
    NIBLETT, T
    MACHINE LEARNING, 1992, 8 (01) : 75 - 85
  • [8] INTERPRETABLE DECISION-TREE INDUCTION IN A BIG DATA PARALLEL FRAMEWORK
    Weinberg, Abraham Itzhak
    Last, Mark
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 27 (04) : 737 - 748
  • [9] Decision-tree induction to detect clinical mastitis with automatic milking
    Kamphuis, C.
    Mollenhorst, H.
    Feelders, A.
    Pietersma, D.
    Hogeveen, H.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2010, 70 (01) : 60 - 68
  • [10] MULTIOBJECTIVE DECISION-TREE ANALYSIS
    HAIMES, YY
    LI, D
    TULSIANI, V
    RISK ANALYSIS, 1990, 10 (01) : 111 - 129