A Survey of Evolutionary Algorithms for Decision-Tree Induction

被引:211
|
作者
Barros, Rodrigo Coelho [1 ]
Basgalupp, Marcio Porto [2 ]
de Carvalho, Andre C. P. L. F. [1 ]
Freitas, Alex A. [3 ]
机构
[1] Univ Sao Paulo, Dept Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, BR-04039000 Sao Jose Dos Campos, SP, Brazil
[3] Univ Kent, Dept Comp Sci, Canterbury CT2 7NZ, Kent, England
基金
巴西圣保罗研究基金会;
关键词
Classification; decision-tree induction; evolutionary algorithms (EAs); regression; soft computing; COST-SENSITIVE CLASSIFICATION; GENETIC ALGORITHMS; GLOBAL INDUCTION; MODEL TREES; KNOWLEDGE; CLASSIFIERS;
D O I
10.1109/TSMCC.2011.2157494
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a survey of evolutionary algorithms that are designed for decision-tree induction. In this context, most of the paper focuses on approaches that evolve decision trees as an alternate heuristics to the traditional top-down divide-and-conquer approach. Additionally, we present some alternative methods that make use of evolutionary algorithms to improve particular components of decision-tree classifiers. The paper's original contributions are the following. First, it provides an up-to-date overview that is fully focused on evolutionary algorithms and decision trees and does not concentrate on any specific evolutionary approach. Second, it provides a taxonomy, which addresses works that evolve decision trees and works that design decision-tree components by the use of evolutionary algorithms. Finally, a number of references are provided that describe applications of evolutionary algorithms for decision-tree induction in different domains. At the end of this paper, we address some important issues and open questions that can be the subject of future research.
引用
收藏
页码:291 / 312
页数:22
相关论文
共 50 条
  • [1] Automatic Design of Decision-Tree Algorithms with Evolutionary Algorithms
    Barros, Rodrigo C.
    Basgalupp, Marcio P.
    de Carvalho, Andre C. P. L. F.
    Freitas, Alex A.
    [J]. EVOLUTIONARY COMPUTATION, 2013, 21 (04) : 659 - 684
  • [2] Estimation of Distribution Algorithms for Decision-Tree Induction
    Cagnini, Henry E. L.
    Barros, Rodrigo C.
    Basgalupp, Marcio P.
    [J]. 2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 2022 - 2029
  • [3] Possibilistic induction in decision-tree learning
    Hüllermeier, E
    [J]. MACHINE LEARNING: ECML 2002, 2002, 2430 : 173 - 184
  • [4] A Hyper-Heuristic Evolutionary Algorithm for Automatically Designing Decision-Tree Algorithms
    Barros, Rodrigo C.
    Basgalupp, Marcio P.
    de Carvalho, Andre C. P. L. F.
    Freitas, Alex A.
    [J]. PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, : 1237 - 1244
  • [5] Characterization and parallelization of decision-tree induction
    Bradford, JP
    Fortes, JAB
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2001, 61 (03) : 322 - 349
  • [6] Parallel formulations of decision-tree classification algorithms
    Srivastava, A
    Han, EH
    Kumar, V
    Singh, V
    [J]. 1998 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING - PROCEEDINGS, 1998, : 237 - 244
  • [7] Evolutionary Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression Data Sets
    Barros, Rodrigo C.
    Basgalupp, Marcio P.
    Freitas, Alex A.
    de Carvalho, Andre C. P. L. F.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (06) : 873 - 892
  • [8] Parallel Formulations of Decision-Tree Classification Algorithms
    Anurag Srivastava
    Eui-Hong Han
    Vipin Kumar
    Vineet Singh
    [J]. Data Mining and Knowledge Discovery, 1999, 3 : 237 - 261
  • [9] Parallel formulations of decision-tree classification algorithms
    Srivastava, A
    Han, EH
    Kumar, V
    Singh, V
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1999, 3 (03) : 237 - 261
  • [10] Explanation of attribute relevance in decision-tree induction
    McSherry, D
    [J]. RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XVIII, 2002, : 39 - 52