Possibilistic induction in decision-tree learning

被引:0
|
作者
Hüllermeier, E [1 ]
机构
[1] Univ Marburg, Dept Math & Comp Sci, D-35032 Marburg, Germany
来源
MACHINE LEARNING: ECML 2002 | 2002年 / 2430卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a generalization of Ockham's razor, a widely applied principle of inductive inference. This generalization intends to capture the aspect of uncertainty involved in inductive reasoning. To this end, Ockham's razor is formalized within the framework of possibility theory: It is not simply used for identifying a single, apparently optimal model, but rather for concluding on the possibility of various candidate models. The possibilistic version of Ockham's razor is applied to (lazy) decision tree learning.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [21] THE DECISION-TREE COMPLEXITY OF ELEMENT DISTINCTNESS
    BOPPANA, RB
    INFORMATION PROCESSING LETTERS, 1994, 52 (06) : 329 - 331
  • [22] Decision-tree analysis of control strategies
    Weber, Romann M.
    Fajen, Brett R.
    PSYCHONOMIC BULLETIN & REVIEW, 2015, 22 (03) : 653 - 672
  • [23] Decision-tree based neural network
    Ivanova, I
    Kubat, M
    MACHINE LEARNING: ECML-95, 1995, 912 : 295 - 298
  • [24] Cybercrime Profiling: Decision-Tree Induction, Examining Perceptions of Internet Risk and Cybercrime Victimisation
    Al-Nemrat, Ameer
    Benzaid, Chafika
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 1, 2015, : 1380 - 1385
  • [25] Fast and accurate binary halftone image resolution increasing by decision-tree learning
    Kim, HY
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 1093 - 1096
  • [26] Evolving Decision-Tree Induction Algorithms with a Multi-Objective Hyper-Heuristic
    Basgalupp, Marcio P.
    Barros, Rodrigo C.
    Podgorelec, Vili
    30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, : 110 - 117
  • [27] Landscape Estimation of Decision-tree Induction based on Grammatical Evolution using Rank Correlation
    Ono, Keiko
    Kushida, Jun-ichi
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 781 - 788
  • [28] USE OF DECISION-TREE INDUCTION FOR PROCESS OPTIMIZATION AND KNOWLEDGE REFINEMENT OF AN INDUSTRIAL-PROCESS
    FAMILI, A
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 1994, 8 (01): : 63 - 75
  • [29] Parallel formulations of decision-tree classification algorithms
    Srivastava, A
    Han, EH
    Kumar, V
    Singh, V
    1998 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING - PROCEEDINGS, 1998, : 237 - 244
  • [30] DECISION-TREE APPROACH TO EARNINGS PER SHARE
    BIRD, FA
    JONES, PA
    ACCOUNTING REVIEW, 1970, 45 (04): : 779 - 783