Influence of traps on transient electric field and mobility evaluation in organic field-effect transistors

被引:25
|
作者
Manaka, Takaaki [1 ]
Liu, Fei [2 ]
Weis, Martin [1 ]
Iwamoto, Mitsumasa [1 ]
机构
[1] Tokyo Inst Technol, Dept Phys Elect, Meguro Ku, Tokyo 1528552, Japan
[2] Tsinghua Univ, Ctr Adv Study, Beijing 100084, Peoples R China
关键词
carrier density; hole mobility; optical harmonic generation; organic field effect transistors; organic semiconductors; polymers; silicon compounds; THIN-FILM TRANSISTORS; 2ND-HARMONIC GENERATION; PERFORMANCE; DEVICE; SEMICONDUCTORS; ELECTRONICS; DIELECTRICS; MORPHOLOGY; TRANSPORT; CIRCUITS;
D O I
10.1063/1.3285503
中图分类号
O59 [应用物理学];
学科分类号
摘要
A significant difference between the transient electric field profiles of the pentacene organic field-effect transistors (OFETs) with SiO(2) and poly(methyl-methacrylate) (PMMA) insulators was found by the time-resolved microscopic optical second-harmonic generation (TRM-SHG) experiment. The profile of former device was broad and changed smoothly, while the latter one had a sharp peak. Particularly, the peak of the transient electric field in SiO(2)-insulated devices moved much faster than that in the PMMA-insulated one. Based on several experimental evidences and computational simulations, we proposed that these differences might arise from a higher trapped carrier density in the conductive channel on the PMMA insulator. Simple approaches were developed to evaluate the trap density and define dynamic carrier mobility in terms of the transient electric field measured by the TRM-SHG technique. This mobility quantitatively depicts that the transient hole transport in the OFET with the PMMA insulator is trap controlled.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Organic field-effect bipolar transistors
    Dodabalapur, A
    Katz, HE
    Torsi, L
    Haddon, RC
    APPLIED PHYSICS LETTERS, 1996, 68 (08) : 1108 - 1110
  • [42] Trapping in organic field-effect transistors
    Schön, JH
    Batlogg, B
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (01) : 336 - 342
  • [43] Monolayer organic field-effect transistors
    Jie Liu
    Lang Jiang
    Wenping Hu
    Yunqi Liu
    Daoben Zhu
    Science China Chemistry, 2019, 62 : 313 - 330
  • [44] Monolayer organic field-effect transistors
    Liu, Jie
    Jiang, Lang
    Hu, Wenping
    Liu, Yunqi
    Zhu, Daoben
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (03) : 313 - 330
  • [45] Functional Organic Field-Effect Transistors
    Guo, Yunlong
    Yu, Gui
    Liu, Yunqi
    ADVANCED MATERIALS, 2010, 22 (40) : 4427 - 4447
  • [46] Organic semiconductors for organic field-effect transistors
    Yamashita, Yoshiro
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2009, 10 (02)
  • [47] Monolayer organic field-effect transistors
    Jie Liu
    Lang Jiang
    Wenping Hu
    Yunqi Liu
    Daoben Zhu
    Science China(Chemistry), 2019, (03) : 313 - 330
  • [48] Vertical Organic Field-Effect Transistors
    Liu, Jinyu
    Qin, Zhengsheng
    Gao, Haikuo
    Dong, Huanli
    Zhu, Jia
    Hu, Wenping
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (17)
  • [49] Reliability of Organic Field-Effect Transistors
    Sirringhaus, Henning
    ADVANCED MATERIALS, 2009, 21 (38-39) : 3859 - 3873
  • [50] Interfaces in Organic Field-Effect Transistors
    Horowitz, Gilles
    ORGANIC ELECTRONICS, 2010, 223 : 113 - 153