The portion of matrices with real spectrum in the real orthogonal Lie algebra

被引:0
|
作者
Krivonogov, A. S. [1 ]
Churkin, V. A. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
real orthogonal Lie algebra; random matrices with real spectrum;
D O I
10.1134/S0037446616020130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The portion of matrices with real spectrum in a matrix Lie algebra is the ratio of the volume of the set of matrices with real spectrum in a ball centered at the zero of the algebra to the volume of the whole ball. We calculate the portion for the real orthogonal Lie algebra.
引用
收藏
页码:303 / 321
页数:19
相关论文
共 50 条
  • [41] On complex matrices with simple spectrum that are unitarily similar to real matrices
    Khakim D. Ikramov
    Computational Mathematics and Mathematical Physics, 2011, 51
  • [42] Gradings on the algebra of triangular matrices as a Lie algebra: Revisited
    Koshlukov, Plamen
    Yasumura, Felipe Yukihide
    JOURNAL OF ALGEBRA, 2025, 664 : 756 - 779
  • [43] On the Lie Algebra Associated to the Canonical Matrices
    Zhao, Zhuoyi
    Wang, Xiuling
    FRONTIERS OF MATHEMATICS, 2025, 20 (01): : 109 - 136
  • [44] On the number of matrices to generate a matrix *-algebra over the real field
    Aiura, Daishi
    Kakimura, Naonori
    Murota, Kazuo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1252 - 1266
  • [45] On the number of real eigenvalues of a product of truncated orthogonal random matrices
    Little, Alex
    Mezzadri, Francesco
    Simm, Nick
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [46] How Many Eigenvalues of a Product of Truncated Orthogonal Matrices are Real?
    Forrester, P. J.
    Ipsen, J. R.
    Kumar, S.
    EXPERIMENTAL MATHEMATICS, 2020, 29 (03) : 276 - 290
  • [47] Real subalgebras of small dimensions of the matrix lie algebra M(2, ℂ)
    F. A. Belykh
    A. Yu. Borzakov
    A. V. Loboda
    Russian Mathematics, 2007, 51 (5) : 11 - 23
  • [48] ALGEBRA - CYCLIC HOMOLOGY AND HOMOLOGY OF THE LIE-ALGEBRA OF MATRICES
    LODAY, JL
    QUILLEN, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (06): : 295 - 297
  • [49] The orthogonal Lie algebra of operators: Ideals and derivations
    Bu, Qinggang
    Zhu, Sen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
  • [50] Lie Algebra of the DSER Elementary Orthogonal Group
    Ambily, A. A.
    Pradeep, V. K. Aparna
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 501 - 507