The orthogonal Lie algebra of operators: Ideals and derivations

被引:4
|
作者
Bu, Qinggang [1 ]
Zhu, Sen [2 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
基金
美国国家科学基金会;
关键词
Orthogonal Lie algebra; Lie ideal; Derivation; Skew-symmetric operator; Skew-symmetric matrix; SYMMETRIC-OPERATORS; AUTOMORPHIC-FUNCTIONS; SKEW; DECOMPOSITION;
D O I
10.1016/j.jmaa.2020.124134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this paper the infinite-dimensional orthogonal Lie algebra O-C which consists of all bounded linear operators Ton a separable, infinite-dimensional, complex Hilbert space Hsatisfying CTC=-T*, where C is a conjugation on H. By employing results from the theory of complex symmetric operators and skew-symmetric operators, we determine the Lie ideals of O-C and their dual spaces. We study derivations of O-C and determine their spectra. These results complete some results of P. de la Harpe and provide interesting contrasts between O-C and the algebra B(H) of all bounded linear operators on H. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] ON THE IDEALS OF A LIE-ALGEBRA OF DERIVATIONS
    JORDAN, DA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 33 : 33 - 39
  • [2] Lie Algebra of Derivations of the Algebra of Differential Operators
    赵开明
    Chinese Science Bulletin, 1993, (10) : 793 - 798
  • [3] LIE-ALGEBRA OF DERIVATIONS OF THE ALGEBRA OF DIFFERENTIAL-OPERATORS
    ZHAO, KM
    CHINESE SCIENCE BULLETIN, 1993, 38 (10): : 793 - 798
  • [4] ON THE GROUP OF LIE-ORTHOGONAL OPERATORS ON A LIE ALGEBRA
    Bilun, S. V.
    Maksimenko, D. V.
    Petravchuk, A. P.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (03): : 199 - 203
  • [5] The Lie algebra of derivations of a current Lie algebra
    Ochoa Arango, Jesus Alonso
    Rojas, Nadina
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 625 - 637
  • [6] Lie algebra of column-finite infinite matrices: Ideals and derivations
    Holubowski, Waldemar
    Zurek, Sebastian
    JOURNAL OF ALGEBRA, 2023, 619 : 517 - 537
  • [7] LIE IDEALS AND NIL DERIVATIONS
    CARINI, L
    GIAMBRUNO, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4A (03): : 497 - 503
  • [8] On Lie ideals with generalized derivations
    Goelbasi, Oe.
    Kaya, K.
    SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (05) : 862 - 866
  • [9] On Lie ideals with generalized derivations
    Ö. Gölbaşi
    K. Kaya
    Siberian Mathematical Journal, 2006, 47 : 862 - 866
  • [10] ON THE IDEALS OF A LIE RING OF DERIVATIONS
    Liu, Cheng-Kai
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) : 2396 - 2404