The Laguerre-Sobolev-type orthogonal polynomials

被引:10
|
作者
Duenas, Herbert [1 ,2 ]
Marcellan, Francisco [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[2] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
关键词
Quasi-orthogonal polynomials; Laguerre polynomials; Relative asymptotics; Mehler-Heine formula; Zeros;
D O I
10.1016/j.jat.2009.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we Study the asymptotic behaviour of polynomials orthogonal with respect to a Sobolev-type inner product < p, q >(S) = integral(infinity)(0) p(x)q(x)x(alpha)e(-x)dx + N-p((j))(0)(q)((j))(0), where N is an element of R+ and j is an element of N. We Will focus Our attention on the outer relative asymptotics with respect to the standard Laguerre polynomials as well as oil all analog of the Mehler-Heine formula for the rescaled polynomials. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:421 / 440
页数:20
相关论文
共 50 条
  • [21] On incomplete symmetric orthogonal polynomials of Laguerre type
    Masjed-Jamei, Mohammad
    Koepf, Wolfram
    [J]. APPLICABLE ANALYSIS, 2011, 90 (3-4) : 769 - 775
  • [22] THE LAGUERRE TYPE d- ORTHOGONAL POLYNOMIALS
    Korkmaz-Duzgun, Duriye
    Erkus-Duman, Esra
    [J]. JOURNAL OF SCIENCE AND ARTS, 2018, (01): : 95 - 106
  • [23] ON ENTROPY OF ALMOST ORTHOGONAL POLYNOMIALS OF LAGUERRE TYPE
    Rajkovic, Predrag M.
    Miljkovic, Vojkan
    Rajkovic, Kostadin
    [J]. INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 233 - 240
  • [24] Orthogonal Polynomials with Varying Weight of Laguerre Type
    Rajkovic, Predrag M.
    Marinkovic, Sladjana D.
    Stankovic, Miomir S.
    [J]. FILOMAT, 2015, 29 (05) : 1053 - 1062
  • [25] On differential equations for Sobolev-type Laguerre polynomials
    Koekoek, J
    Koekoek, R
    Bavinck, H
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) : 347 - 393
  • [26] Zeros of Sobolev orthogonal polynomials of Hermite type
    de Bruin, MG
    Groenevelt, WGM
    Meijer, HG
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 132 (01) : 135 - 166
  • [27] On some classical type Sobolev orthogonal polynomials
    Zagorodnyuk, Sergey M.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2020, 250
  • [28] Zeros of Sobolev orthogonal polynomials of Gegenbauer type
    Groenevelt, WGM
    [J]. JOURNAL OF APPROXIMATION THEORY, 2002, 114 (01) : 115 - 140
  • [29] On Freud-Sobolev type orthogonal polynomials
    Garza, Luis E.
    Huertas, Edmundo J.
    Marcellan, Francisco
    [J]. AFRIKA MATEMATIKA, 2019, 30 (3-4) : 505 - 528
  • [30] Varying discrete Laguerre-Sobolev orthogonal polynomials: Asymptotic behavior and zeros
    Manas-Manas, Juan F.
    Marcellan, Francisco
    Moreno-Balcazar, Juan J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 612 - 618