Varying discrete Laguerre-Sobolev orthogonal polynomials: Asymptotic behavior and zeros

被引:3
|
作者
Manas-Manas, Juan F. [1 ]
Marcellan, Francisco [2 ]
Moreno-Balcazar, Juan J. [1 ,3 ]
机构
[1] Univ Almeria, Dept Matemat, Almeria, Spain
[2] Univ Carlos III Madrid, Dept Matemat, E-28903 Getafe, Spain
[3] Inst Carlos I Fis Teor & Computac, Madrid, Spain
关键词
Laguerre-Sobolev orthogonal polynomials; Mehler-Heine formulae; Asymptotics; Zeros;
D O I
10.1016/j.amc.2013.07.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a varying discrete Sobolev inner product involving the Laguerre weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and of their zeros. We are interested in Mehler-Heine type formulas because they describe the asymptotic differences between these Sobolev orthogonal polynomials and the classical Laguerre polynomials. Moreover, they give us an approximation of the zeros of the Sobolev polynomials in terms of the zeros of other special functions. We generalize some results appeared very recently in the literature for both the varying and non-varying cases. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:612 / 618
页数:7
相关论文
共 50 条
  • [1] An asymptotic result for Laguerre-Sobolev orthogonal polynomials
    Marcellan, F
    Meijer, HG
    Perez, TE
    Pinar, MA
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (01) : 87 - 94
  • [2] Asymptotic properties of Laguerre-Sobolev type orthogonal polynomials
    Duenas, Herbert
    Huertas, Edmundo J.
    Marcellan, Francisco
    [J]. NUMERICAL ALGORITHMS, 2012, 60 (01) : 51 - 73
  • [3] ON LAGUERRE-SOBOLEV TYPE ORTHOGONAL POLYNOMIALS: ZEROS AND ELECTROSTATIC INTERPRETATION
    Molano Molano, Luis Alejandro
    [J]. ANZIAM JOURNAL, 2013, 55 (01): : 39 - 54
  • [4] Laguerre-Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) : 245 - 265
  • [5] Differential equations for discrete Laguerre-Sobolev orthogonal polynomials
    Duran, Antonio J.
    de la Iglesia, Manuel D.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2015, 195 : 70 - 88
  • [6] On Laguerre-Sobolev matrix orthogonal polynomials
    Fuentes, Edinson
    Garza, Luis E.
    Saiz, Martha L.
    [J]. OPEN MATHEMATICS, 2024, 22 (01):
  • [7] A generating function for Laguerre-Sobolev orthogonal polynomials
    Meijer, HG
    Piñar, MA
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 120 (01) : 111 - 123
  • [8] Connection coefficients for Laguerre-Sobolev orthogonal polynomials
    Marcellán, F
    Sánchez-Ruiz, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 283 (02) : 440 - 458
  • [9] Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
    Manas-Manas, Juan F.
    Marcellan, Francisco
    Moreno-Balcazar, Juan J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 : 341 - 353
  • [10] Laguerre-Sobolev orthogonal polynomials:: asymptotics for coherent pairs of type II
    Alfaro, M
    Moreno-Balcázar, JJ
    Rezola, ML
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 122 (01) : 79 - 96