On Laguerre-Sobolev matrix orthogonal polynomials

被引:0
|
作者
Fuentes, Edinson [1 ]
Garza, Luis E. [2 ]
Saiz, Martha L. [3 ]
机构
[1] Univ Los Llanos, Fac Ciencias Bas Ingn, Villavicencio, Colombia
[2] Univ Colima, Fac Ciencias, Colima, Mexico
[3] Univ Pedag & Tecnol Colombia, Fac Estudios Distancia, Tunja, Colombia
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
matrix orthogonal polynomials; Laguerre-Sobolev polynomials; ASYMPTOTICS;
D O I
10.1515/math-2024-0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by < p , q > S & colone; integral 0 infinity p * ( x ) W L A ( x ) q ( x ) d x + M integral 0 infinity ( p ' ( x ) ) * W ( x ) q ' ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}<^>{* }\left(x){{\bf{W}}}_{{\bf{L}}}<^>{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty }{\int }}{(p<^>{\prime} \left(x))}<^>{* }{\bf{W}}\left(x)q<^>{\prime} \left(x){\rm{d}}x, where W L A ( x ) = e - lambda x x A {{\bf{W}}}_{{\bf{L}}}<^>{{\bf{A}}}\left(x)={e}<^>{-\lambda x}{x}<^>{{\bf{A}}} is the Laguerre matrix weight, W {\bf{W}} is some matrix weight, p p and q q are the matrix polynomials, M {\bf{M}} and A {\bf{A}} are the matrices such that M {\bf{M}} is non-singular and A {\bf{A}} satisfies a spectral condition, and lambda \lambda is a complex number with positive real part.
引用
收藏
页数:18
相关论文
共 50 条