Titan Science with the James Webb Space Telescope

被引:18
|
作者
Nixon, Conor A. [1 ]
Achterberg, Richard K. [1 ,2 ]
Adamkovics, Mate [3 ]
Bezard, Bruno [4 ]
Bjoraker, Gordon L. [1 ]
Cornet, Thomas [5 ]
Hayes, Alexander G. [6 ]
Lellouch, Emmanuel [4 ]
Lemmon, Mark T. [7 ]
Lopez-Puertas, Manuel [8 ]
Rodriguez, Sebastien [9 ]
Sotin, Christophe [10 ]
Teanby, Nicholas A. [11 ]
Turtle, Elizabeth P. [12 ]
West, Robert A. [10 ]
机构
[1] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA
[2] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[3] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA
[4] Univ Paris 06, Sorbonne Univ, Sorbonne Paris Cite,CNRS, PSL Res Univ,Univ Paris Diderot,Observ Paris,LESI, F-92195 Meudon, France
[5] ESA ESAC, POB 78, E-28691 Madrid, Spain
[6] Cornell Univ, Dept Agron, Space Sci Bldg, Ithaca, NY 14853 USA
[7] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA
[8] CSIC, Inst Astrofis Andalucia, Glorieta Astronom S-N, E-18008 Granada, Spain
[9] Univ Paris Diderot, CEA Saclay, CNRS UMR 7158, Lab Astrophys Instrumentat & Modelisat AIM, F-91191 Gif Sur Yvette, France
[10] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[11] Univ Bristol, Sch Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England
[12] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
基金
英国科学技术设施理事会; 美国国家科学基金会;
关键词
infrared: planetary system; plants and satellites: individual (Titan); telescopes; ISOTOPIC-RATIOS; TROPOSPHERIC CLOUDS; TEMPORAL VARIATIONS; UPPER-ATMOSPHERE; SEASONAL-CHANGES; CARBON-MONOXIDE; SURFACE; HCN; STRATOSPHERE; CASSINI/VIMS;
D O I
10.1088/1538-3873/128/959/018007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 mu m). In this paper, we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam, and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (1) surface (2) tropospheric clouds (3) tropospheric gases (4) stratospheric composition, and (5) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities, and limitations of the instrument suite and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors-sufficient to encompass Titan, but with significantly faster readout times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five-to ten-year expected lifetime for the observatory, for example, monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA, and next-generation ground-based telescopes (TMT, GMT, EELT).
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [31] Integrated Telescope Model for the James Webb Space Telescope
    Knight, J. Scott
    Acton, D. Scott
    Lightsey, Paul
    Barto, Allison
    MODELING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY V, 2012, 8449
  • [32] Space telescopes after the James Webb Space Telescope
    Beckwith, SVW
    UV/OPTICAL/IR SPACE TELESCOPES: INNOVATIVE TECHNOLOGIES AND CONCEPTS, 2003, 5166 : 1 - 7
  • [33] James Webb Space Telescope: large deployable cryogenic telescope in space
    Lightsey, Paul A.
    Atkinson, Charles
    Clampin, Mark
    Feinberg, Lee D.
    OPTICAL ENGINEERING, 2012, 51 (01)
  • [34] Lagrange Points and the James Webb Space Telescope
    Teets, Donald
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (04): : 309 - 318
  • [35] Integration and verification of the James Webb Space Telescope
    Atkinson, C
    Harrison, P
    Matthews, G
    Atcheson, P
    OPTICAL MANUFACUTRING AND TESTING V, 2003, 5180 : 157 - 168
  • [36] Hartmann Test for the James Webb Space Telescope
    Knight, J. Scott
    Feinberg, Lee
    Howard, Joseph
    Acton, D. Scott
    Whitman, Tony L.
    Smith, Koby
    SPACE TELESCOPES AND INSTRUMENTATION 2016: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2016, 9904
  • [37] Status of the james webb space telescope observatory
    Clampin, Mark
    Proceedings of SPIE - The International Society for Optical Engineering, 2012, 8442
  • [38] Optical performance for the James Webb Space Telescope
    Lightsey, Paul A.
    Barto, Allison A.
    Contreras, James
    Proc SPIE Int Soc Opt Eng, 1600, PART 2 (825-832):
  • [39] The scientific capabilities of the James Webb Space Telescope
    Gardner, Jonathan P.
    SPACE TELESCOPES AND INSTRUMENTATION 2008: OPTICAL, INFRARED, AND MILLIMETER, PTS 1 AND 2, 2008, 7010
  • [40] James Webb Space Telescope use of XML
    Gal-Edd, Jonathan
    Fatig, Curtis
    SMC-IT 2006: 2nd IEEE International Conference on Space Mission Challenges for Information Technology, Proceedings, 2006, : 448 - 453