Existence and stability of singular heteroclinic orbits for the Ginzburg-Landau equation

被引:22
|
作者
Kapitula, T [1 ]
机构
[1] UNIV UTAH,DEPT MATH,SALT LAKE CITY,UT 84112
关键词
D O I
10.1088/0951-7715/9/3/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and stability of travelling waves of the Ginzburg-Landau equation is considered. The waves in question exist on a slow manifold in phase space and connect two stable plane waves with different wave numbers. The existence of these waves is proven via the use of the methods of geometric singular perturbation theory. Topological methods are used to prove the linear stability of the waves. The waves are shown to be nonlinearly stable in polynomially weighted spaces. Even though the Ginzburg-Landau equation possesses both a rotational invariance and a spatial translation invariance, small perturbations of the wave decay to the wave itself, and not to a translate of the wave.
引用
收藏
页码:669 / 685
页数:17
相关论文
共 50 条
  • [31] STABILITY OF PHASE-SINGULAR SOLUTIONS TO THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION
    SASA, S
    IWAMOTO, T
    [J]. PHYSICS LETTERS A, 1993, 175 (05) : 289 - 294
  • [32] Nonglobal existence of solutions for a generalized Ginzburg-Landau equation coupled with a Poisson equation
    Snoussi, S
    Tayachi, S
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (02) : 558 - 570
  • [33] On self-similar singular solutions of the complex Ginzburg-Landau equation
    Plechác, P
    Sverák, V
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (10) : 1215 - 1242
  • [34] Existence of the Ginzburg-Landau vortex number
    Aigner, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (01) : 17 - 22
  • [35] On the stability of the Ginzburg-Landau vortex
    Gravejat, Philippe
    Pacherie, Eliot
    Smets, Didier
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (05) : 1015 - 1065
  • [36] Global existence for the generalised 2D Ginzburg-Landau equation
    Gao, HJ
    Kwek, KH
    [J]. ANZIAM JOURNAL, 2003, 44 : 381 - 392
  • [37] Stability for amplitude spiral wave in complex Ginzburg-Landau equation
    Gao Ji-Hua
    Wang Yu
    Zhang Chao
    Yang Hai-Peng
    Ge Zao-Chuan
    [J]. ACTA PHYSICA SINICA, 2014, 63 (02)
  • [38] On Asymptotic Stability of Moving Kink for Relativistic Ginzburg-Landau Equation
    Kopylova, E. A.
    Komech, A. I.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 302 (01) : 225 - 252
  • [39] THEORY OF STEADY GINZBURG-LANDAU EQUATION, IN HYDRODYNAMIC STABILITY PROBLEMS
    IOOSS, G
    MIELKE, A
    DEMAY, Y
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1989, 8 (03) : 229 - 268
  • [40] On Asymptotic Stability of Moving Kink for Relativistic Ginzburg-Landau Equation
    E. A. Kopylova
    A. I. Komech
    [J]. Communications in Mathematical Physics, 2011, 302 : 225 - 252