On Asymptotic Stability of Moving Kink for Relativistic Ginzburg-Landau Equation

被引:0
|
作者
E. A. Kopylova
A. I. Komech
机构
[1] Institute for Information Transmission Problems RAS,
[2] Fakultät für Mathematik,undefined
[3] Universität Wien,undefined
来源
关键词
Soliton; Solitary Wave; Asymptotic Stability; Topological Excitation; Symplectic Orthogonality;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the asymptotic stability of the moving kinks for the nonlinear relativistic wave equations in one space dimension with a Ginzburg-Landau potential: starting in a small neighborhood of the kink, the solution, asymptotically in time, is the sum of a uniformly moving kink and dispersive part described by the free Klein-Gordon equation. The remainder decays in a global energy norm. Our recent results on the weighted energy decay for the Klein-Gordon equations play a crucial role in the proofs.
引用
下载
收藏
页码:225 / 252
页数:27
相关论文
共 50 条