On Asymptotic Stability of Moving Kink for Relativistic Ginzburg-Landau Equation

被引:0
|
作者
E. A. Kopylova
A. I. Komech
机构
[1] Institute for Information Transmission Problems RAS,
[2] Fakultät für Mathematik,undefined
[3] Universität Wien,undefined
来源
关键词
Soliton; Solitary Wave; Asymptotic Stability; Topological Excitation; Symplectic Orthogonality;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the asymptotic stability of the moving kinks for the nonlinear relativistic wave equations in one space dimension with a Ginzburg-Landau potential: starting in a small neighborhood of the kink, the solution, asymptotically in time, is the sum of a uniformly moving kink and dispersive part described by the free Klein-Gordon equation. The remainder decays in a global energy norm. Our recent results on the weighted energy decay for the Klein-Gordon equations play a crucial role in the proofs.
引用
下载
收藏
页码:225 / 252
页数:27
相关论文
共 50 条
  • [21] Controllability of the Ginzburg-Landau equation
    Rosier, Lionel
    Zhang, Bing-Yu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (3-4) : 167 - 172
  • [23] AN ASYMPTOTIC ESTIMATE FOR THE GINZBURG-LANDAU MODEL
    STRUWE, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (07): : 677 - 680
  • [24] ASYMPTOTIC BEHAVIOR FOR GENERALIZED GINZBURG-LANDAU POPULATION EQUATION WITH STOCHASTIC PERTURBATION
    Jiahe Xu
    Kang Zhou
    Qiuying Lu
    Annals of Applied Mathematics, 2016, 32 (02) : 174 - 182
  • [25] Asymptotic behavior of minimizers of a Ginzburg-Landau equation with weight near their zeroes
    Beaulieu, A
    Hadiji, R
    ASYMPTOTIC ANALYSIS, 2000, 22 (3-4) : 303 - 347
  • [26] ASYMPTOTIC COMPACTNESS OF STOCHASTIC COMPLEX GINZBURG-LANDAU EQUATION ON AN UNBOUNDED DOMAIN
    Bloemker, Dirk
    Han, Yongqian
    STOCHASTICS AND DYNAMICS, 2010, 10 (04) : 613 - 636
  • [27] Asymptotic behavior of three-dimensional Ginzburg-Landau type equation
    Lü, SJ
    Lu, QS
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 (02): : 209 - 220
  • [28] ASYMPTOTIC STRUCTURE FACTOR FOR THE 2-COMPONENT GINZBURG-LANDAU EQUATION
    PURI, S
    PHYSICS LETTERS A, 1992, 164 (02) : 211 - 217
  • [29] On the stability of the Ginzburg-Landau vortex
    Gravejat, Philippe
    Pacherie, Eliot
    Smets, Didier
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (05) : 1015 - 1065
  • [30] Stability for amplitude spiral wave in complex Ginzburg-Landau equation
    Gao Ji-Hua
    Wang Yu
    Zhang Chao
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2014, 63 (02)