INTERPRETABLE MACHINE LEARNING Mining for informative signals in biological sequences

被引:0
|
作者
Alaa, Ahmed M. [1 ,2 ]
机构
[1] Broad Inst MIT & Harvard, Merkin Bldg, Cambridge, MA 02142 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
PREDICTION;
D O I
10.1038/s42256-022-00524-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning models for sequential data can be trained to make accurate predictions from large biological datasets. New tools from computer vision and natural language processing can help us make these models interpretable to biologists.
引用
收藏
页码:665 / 666
页数:2
相关论文
共 50 条
  • [31] Interpretable machine learning for perturbation biology
    Shen, Judy
    Yuan, Bo
    Luna, Augustin
    Korkut, Anil
    Marks, Debora
    Ingraham, John
    Sander, Chris
    [J]. CANCER RESEARCH, 2020, 80 (16)
  • [32] Interpretable machine learning for materials design
    James Dean
    Matthias Scheffler
    Thomas A. R. Purcell
    Sergey V. Barabash
    Rahul Bhowmik
    Timur Bazhirov
    [J]. Journal of Materials Research, 2023, 38 : 4477 - 4496
  • [33] Interpretable discovery of semiconductors with machine learning
    Choubisa, Hitarth
    Todorovic, Petar
    Pina, Joao M. M.
    Parmar, Darshan H.
    Li, Ziliang
    Voznyy, Oleksandr
    Tamblyn, Isaac
    Sargent, Edward H.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [34] Interpretable Machine Learning Tools: A Survey
    Agarwal, Namita
    Das, Saikat
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1528 - 1534
  • [35] Interpretable machine learning for materials design
    Dean, James
    Scheffler, Matthias
    Purcell, Thomas A. R.
    Barabash, Sergey V.
    Bhowmik, Rahul
    Bazhirov, Timur
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (20) : 4477 - 4496
  • [36] Interpretable Differencing of Machine Learning Models
    Haldar, Swagatam
    Saha, Diptikalyan
    Wei, Dennis
    Nair, Rahul
    Daly, Elizabeth M.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 788 - 797
  • [37] Conceptual challenges for interpretable machine learning
    Watson, David S.
    [J]. SYNTHESE, 2022, 200 (01)
  • [38] Determining directions of service quality management using online review mining with interpretable machine learning
    Shin, Jongkyung
    Joung, Junegak
    Lim, Chiehyeon
    [J]. INTERNATIONAL JOURNAL OF HOSPITALITY MANAGEMENT, 2024, 118
  • [39] Mining Campus Big Data: Prediction of Career Choice Using Interpretable Machine Learning Method
    Wang, Yuan
    Yang, Liping
    Wu, Jun
    Song, Zisheng
    Shi, Li
    [J]. MATHEMATICS, 2022, 10 (08)
  • [40] Classification and feature extraction of biological signals using Machine Learning Techniques
    Ciocirlan, Marina
    Udrea, Andreea
    [J]. 2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 780 - 784