INTERPRETABLE MACHINE LEARNING Mining for informative signals in biological sequences

被引:0
|
作者
Alaa, Ahmed M. [1 ,2 ]
机构
[1] Broad Inst MIT & Harvard, Merkin Bldg, Cambridge, MA 02142 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
PREDICTION;
D O I
10.1038/s42256-022-00524-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning models for sequential data can be trained to make accurate predictions from large biological datasets. New tools from computer vision and natural language processing can help us make these models interpretable to biologists.
引用
收藏
页码:665 / 666
页数:2
相关论文
共 50 条
  • [21] ADAPTIVE MACHINE LEARNING TECHNIQUE FOR PERIODICITY DETECTION IN BIOLOGICAL SEQUENCES
    Rasheed, Faraz
    Alshalalfa, Mohammed
    Alhajj, Reda
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2009, 19 (01) : 11 - 24
  • [22] Datascope: Mining biological sequences
    Kasif, S
    [J]. IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1999, 14 (06): : 38 - 43
  • [23] Mining Biological Sequences with Masks
    Battaglia, Giovanni
    Grossi, Roberto
    Marangoni, Roberto
    Pisanti, Nadia
    [J]. PROCEEDINGS OF THE 20TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATION, 2009, : 193 - 197
  • [24] Interpretable machine learning in bioinformatics Introduction
    Cho, Young-Rae
    Kang, Mingon
    [J]. METHODS, 2020, 179 : 1 - 2
  • [25] Interpretable machine learning with reject option
    Brinkrolf, Johannes
    Hammer, Barbara
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (04) : 283 - 290
  • [26] A Survey of Interpretable Machine Learning Methods
    Wang, Yan
    Tuerhong, Gulanbaier
    [J]. 2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 232 - 237
  • [27] Interpretable discovery of semiconductors with machine learning
    Hitarth Choubisa
    Petar Todorović
    Joao M. Pina
    Darshan H. Parmar
    Ziliang Li
    Oleksandr Voznyy
    Isaac Tamblyn
    Edward H. Sargent
    [J]. npj Computational Materials, 9
  • [28] Interpretable Machine Learning for Assessing the Cumulative Damage of a Reinforced Concrete Frame Induced by Seismic Sequences
    Lazaridis, Petros C.
    Kavvadias, Ioannis E.
    Demertzis, Konstantinos
    Iliadis, Lazaros
    Vasiliadis, Lazaros K.
    [J]. SUSTAINABILITY, 2023, 15 (17)
  • [29] The Resolved Mutual Information Function as a Structural Fingerprint of Biomolecular Sequences for Interpretable Machine Learning Classifiers
    Bohnsack, Katrin Sophie
    Kaden, Marika
    Abel, Julia
    Saralajew, Sascha
    Villmann, Thomas
    [J]. ENTROPY, 2021, 23 (10)
  • [30] Conceptual challenges for interpretable machine learning
    David S. Watson
    [J]. Synthese, 2022, 200