INTERPRETABLE MACHINE LEARNING Mining for informative signals in biological sequences

被引:0
|
作者
Alaa, Ahmed M. [1 ,2 ]
机构
[1] Broad Inst MIT & Harvard, Merkin Bldg, Cambridge, MA 02142 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
PREDICTION;
D O I
10.1038/s42256-022-00524-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning models for sequential data can be trained to make accurate predictions from large biological datasets. New tools from computer vision and natural language processing can help us make these models interpretable to biologists.
引用
收藏
页码:665 / 666
页数:2
相关论文
共 50 条
  • [1] Mining for informative signals in biological sequences
    Ahmed M. Alaa
    [J]. Nature Machine Intelligence, 2022, 4 : 665 - 666
  • [2] Explainable and interpretable machine learning and data mining
    Atzmueller, Martin
    Fuernkranz, Johannes
    Kliegr, Tomas
    Schmid, Ute
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (05) : 2571 - 2595
  • [3] A data mining approach based on machine learning techniques to classify biological sequences
    Maddouri, M
    Elloumi, M
    [J]. KNOWLEDGE-BASED SYSTEMS, 2002, 15 (04) : 217 - 223
  • [4] Learning Interpretable Representations with Informative Entanglements
    Beyazit, Ege
    Tuncel, Doruk
    Yuan, Xu
    Tzeng, Nian-Feng
    Wu, Xindong
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1970 - 1976
  • [5] Automation of an Educational Data Mining Model Applying Interpretable Machine Learning and Auto Machine Learning
    Novillo Rangone, Gabriel
    Pizarro, Carlos
    Montejano, German
    [J]. COMMUNICATION AND SMART TECHNOLOGIES (ICOMTA 2021), 2022, 259 : 22 - 30
  • [6] Pattern Mining and Machine Learning for Demographic Sequences
    Ignatov, Dmitry I.
    Mitrofanova, Ekaterina
    Muratova, Anna
    Gizdatullin, Danil
    [J]. KNOWLEDGE ENGINEERING AND SEMANTIC WEB, KESW 2015, 2015, 518 : 225 - 239
  • [7] Enabling interpretable machine learning for biological data with reliability scores
    Ahlquist, K. D.
    Sugden, Lauren
    Ramachandran, Sohini
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (05)
  • [8] An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals
    Vazquez, Manuel A.
    Maghsoudi, Arash
    Marino, Ines P.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2021, 15
  • [9] Interpretable Machine Learning
    Chen, Valerie
    Li, Jeffrey
    Kim, Joon Sik
    Plumb, Gregory
    Talwalkar, Ameet
    [J]. Queue, 2021, 19 (06): : 28 - 56
  • [10] adabmDCA: adaptive Boltzmann machine learning for biological sequences
    Muntoni, Anna Paola
    Pagnani, Andrea
    Weigt, Martin
    Zamponi, Francesco
    [J]. BMC BIOINFORMATICS, 2021, 22 (01):