SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE USING PCA AND GABOR FILTERING

被引:3
|
作者
Yan, Qingyu [1 ]
Zhang, Junping [1 ]
Feng, Jia [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; spatial texture information; rolling guidance filter;
D O I
10.1109/IGARSS39084.2020.9324555
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of spectral information and spatial context is known to be a suitable way in improving classification accuracy for hyperspectral image. In this paper, a novel method using PCA and spatial filtering for the classification of hyperspectral image is proposed. Firstly, PCA is used to extract spectral information from the hyperspectral image. Secondly, spatial filters containing a set of 2-D Gabor filters and rolling guidance filters (RGF) are convolved with the principal components to extract the subtle spatial texture and edge features respectively. Thirdly, the obtained features are concatenated together as a feature cube to be classified by SVM. The proposed method is thus named as PCA-GR. Experimental results on two real hyperspectral image data sets demonstrate the significant advantages of the proposed method over the compared ones.
引用
下载
收藏
页码:513 / 516
页数:4
相关论文
共 50 条
  • [41] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [42] SPECTRAL-SPATIAL MULTISCALE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Shi
    Jing, Haitao
    Xue, Huazhu
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 389 - 395
  • [43] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [44] Spectral-Spatial Methods for Hyperspectral Image Classification. Review
    Borzov S.M.
    Potaturkin O.I.
    Optoelectronics, Instrumentation and Data Processing, 2018, 54 (6) : 582 - 599
  • [45] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    REMOTE SENSING, 2019, 11 (16)
  • [46] Spectral-Spatial Classification of Hyperspectral Image Based on Discriminant Analysis
    Yuan, Haoliang
    Tang, Yuan Yan
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2035 - 2043
  • [47] Hyperspectral image classification using spectral-spatial hypergraph convolution neural network
    Ma, Zhongtian
    Jiang, Zhiguo
    Zhang, Haopeng
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [48] Spectral-Spatial Global Graph Reasoning for Hyperspectral Image Classification
    Wang, Di
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (09) : 12924 - 12937
  • [49] Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification
    Houari, Youcef Moudjib
    Duan, Haibin
    Zhang, Baochang
    Maher, Ali
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 221 - 225
  • [50] Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification
    Wang Feifei
    Zhao Huijie
    Li Na
    Li Siyuan
    Cai Yu
    ACTA PHOTONICA SINICA, 2023, 52 (12)