SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE USING PCA AND GABOR FILTERING

被引:3
|
作者
Yan, Qingyu [1 ]
Zhang, Junping [1 ]
Feng, Jia [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; spatial texture information; rolling guidance filter;
D O I
10.1109/IGARSS39084.2020.9324555
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of spectral information and spatial context is known to be a suitable way in improving classification accuracy for hyperspectral image. In this paper, a novel method using PCA and spatial filtering for the classification of hyperspectral image is proposed. Firstly, PCA is used to extract spectral information from the hyperspectral image. Secondly, spatial filters containing a set of 2-D Gabor filters and rolling guidance filters (RGF) are convolved with the principal components to extract the subtle spatial texture and edge features respectively. Thirdly, the obtained features are concatenated together as a feature cube to be classified by SVM. The proposed method is thus named as PCA-GR. Experimental results on two real hyperspectral image data sets demonstrate the significant advantages of the proposed method over the compared ones.
引用
下载
收藏
页码:513 / 516
页数:4
相关论文
共 50 条
  • [31] Fusion of Spectral-Spatial Classifiers for Hyperspectral Image Classification
    Zhong, Shengwei
    Chen, Shuhan
    Chang, Chein-, I
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5008 - 5027
  • [32] HYPERSPECTRAL IMAGE CLASSIFICATION USING SPECTRAL-SPATIAL CONVOLUTIONAL NEURAL NETWORKS
    Nalepa, Jakub
    Tulczyjew, Lukasz
    Myller, Michal
    Kawulok, Michal
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 866 - 869
  • [33] Hyperspectral Image Spectral-Spatial-Range Gabor Filtering
    He, Lin
    Liu, Chenying
    Li, Jun
    Li, Yuanqing
    Li, Shutao
    Yu, Zhuliang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4818 - 4836
  • [34] A Spectral-Spatial Approach for Hyperspectral Image Classification Using Spatial Regularization on Supervised Score Image
    Hadoux, Xavier
    Jay, Sylvain
    Rabatel, Gilles
    Gorretta, Nathalie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2361 - 2369
  • [35] 3D-Gabor Inspired Multiview Active Learning for Spectral-Spatial Hyperspectral Image Classification
    Hu, Jie
    He, Zhi
    Li, Jun
    He, Lin
    Wang, Yiwen
    REMOTE SENSING, 2018, 10 (07)
  • [36] Spectral-spatial hyperspectral image classification with dual spatial ensemble learning
    Fu, Wentao
    Sun, Xiyan
    Ji, Yuanfa
    Bai, Yang
    REMOTE SENSING LETTERS, 2021, 12 (12) : 1194 - 1206
  • [37] Spectral-Spatial Hyperspectral Image Classification Using Cascaded Markov Random Fields
    Cao, Xianghai
    Wang, Xiaozhen
    Wang, Da
    Zhao, Jing
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4861 - 4872
  • [38] Spectral-Spatial Hyperspectral Image Classification Using Cascaded Convolutional Neural Networks
    Dovletov, Gurbandurdy
    Hegemann, Tobias
    Pauli, Josef
    IMAGE ANALYSIS, 2019, 11482 : 78 - 89
  • [39] Spectral-Spatial Hyperspectral Image Classification Using Superpixel and Extreme Learning Machines
    Duan, Wuhui
    Li, Shutao
    Fang, Leyuan
    PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 159 - 167
  • [40] Spectral-Spatial Gabor Surface Feature Fusion Approach for Hyperspectral Imagery Classification
    Jia, Sen
    Wu, Kuilin
    Zhu, Jiasong
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1142 - 1154