Fibonacci-p Quaternions

被引:12
|
作者
Tasci, Dursun [1 ]
Yalcin, Feyza [1 ]
机构
[1] Gazi Univ, Fac Sci, Dept Math, TR-06500 Teknikokullar, Turkey
关键词
Fibonacci-p quaternion; Fibonacci quaternion; Fibonacci p-numbers; NUMBERS;
D O I
10.1007/s00006-014-0472-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Fibonacci-p quaternions which is a generalization of the Fibonacci quaternions are defined by means of recurrence relations. Further, three dimensional case is examined.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 50 条
  • [21] SOME IDENTITIES INVOLVING (p, q)-FIBONACCI AND LUCAS QUATERNIONS
    Cerda-Morales, Gamaliel
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1104 - 1110
  • [22] On higher order Fibonacci quaternions
    Kizilates, Can
    Kone, Tiekoro
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1071 - 1082
  • [23] Generalized Dual Fibonacci Quaternions
    Yuce, Salim
    Aydin, Fugen Torunbalci
    APPLIED MATHEMATICS E-NOTES, 2016, 16 : 276 - 289
  • [24] On higher order Fibonacci quaternions
    Can Kizilateş
    Tiekoro Kone
    The Journal of Analysis, 2021, 29 : 1071 - 1082
  • [25] Pauli-Fibonacci quaternions
    Aydin, Fugen Torunbalci
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (03) : 184 - 193
  • [26] A Generalization of Fibonacci and Lucas Quaternions
    Emrah Polatlı
    Advances in Applied Clifford Algebras, 2016, 26 : 719 - 730
  • [27] On a new generalization of Fibonacci quaternions
    Tan, Elif
    Yilmaz, Semih
    Sahina, Murat
    CHAOS SOLITONS & FRACTALS, 2016, 82 : 1 - 4
  • [28] A Generalization of Fibonacci and Lucas Quaternions
    Polatli, Emrah
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 719 - 730
  • [29] A New Aspect of Dual Fibonacci Quaternions
    Yuce, Salim
    Aydin, Fugen Torunbalci
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 873 - 884
  • [30] k-ORDER FIBONACCI QUATERNIONS
    Asci, Mustafa
    Aydinyuz, Suleyman
    JOURNAL OF SCIENCE AND ARTS, 2021, (01): : 29 - 38