A Generalization of Fibonacci and Lucas Quaternions

被引:0
|
作者
Emrah Polatlı
机构
[1] Bulent Ecevit University,Department of Mathematics, Faculty of Science and Arts
来源
关键词
Generalized Fibonacci quaternions; Generalized Lucas quaternions; Extended Binet formulas; Primary 11B39; Secondary 11B37; 11R52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a generalization of the Fibonacci and Lucas quaternions. We obtain the Binet formulas, generating functions, and some certain identities for these quaternions which include generalizations of some results of Halici.
引用
收藏
页码:719 / 730
页数:11
相关论文
共 50 条
  • [1] A Generalization of Fibonacci and Lucas Quaternions
    Polatli, Emrah
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 719 - 730
  • [2] On a generalization for fibonacci quaternions
    Halici, Serpil
    Karatas, Adnan
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 178 - 182
  • [3] MORE IDENTITIES FOR FIBONACCI AND LUCAS QUATERNIONS
    Irmak, Nurettin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 369 - 375
  • [4] MODIFIED GENERALIZED FIBONACCI AND LUCAS QUATERNIONS
    Kome, Sure
    Kome, Cahit
    Yazlik, Yasin
    JOURNAL OF SCIENCE AND ARTS, 2019, (01): : 49 - 60
  • [5] On a new generalization of Fibonacci quaternions
    Tan, Elif
    Yilmaz, Semih
    Sahina, Murat
    CHAOS SOLITONS & FRACTALS, 2016, 82 : 1 - 4
  • [6] Quaternion Algebras and Generalized Fibonacci–Lucas Quaternions
    Cristina Flaut
    Diana Savin
    Advances in Applied Clifford Algebras, 2015, 25 : 853 - 862
  • [7] On quaternions with generalized Fibonacci and Lucas number components
    Polatli, Emrah
    Kesim, Seyhun
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [8] ON QUATERNIONS WITH INCOMPLETE FIBONACCI AND LUCAS NUMBERS COMPONENTS
    Kizilates, Can
    UTILITAS MATHEMATICA, 2019, 110 : 263 - 269
  • [9] On quaternions with generalized Fibonacci and Lucas number components
    Emrah Polatli
    Seyhun Kesim
    Advances in Difference Equations, 2015
  • [10] A generalization of Fibonacci and Lucas matrices
    Stanimirovic, Predrag
    Nikolov, Jovana
    Stanimirovic, Ivan
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (14) : 2606 - 2619