Differential Variation Analysis Enables Detection of Tumor Heterogeneity Using Single-Cell RNA-Sequencing Data

被引:23
|
作者
Davis-Marcisak, Emily F. [1 ,2 ]
Sherman, Thomas D. [2 ]
Orugunta, Pranay [2 ]
Stein-O'Brien, Genevieve L. [1 ,2 ,3 ]
Puram, Sidharth V. [4 ,5 ]
Torres, Evanthia T. Roussos [2 ]
Hopkins, Alexander C. [6 ]
Jaffee, Elizabeth M. [2 ]
Favorov, Alexander V. [2 ,7 ]
Afsari, Bahman [2 ]
Goff, Loyal A. [1 ,3 ]
Fertig, Elana J. [2 ,8 ,9 ]
机构
[1] Johns Hopkins Sch Med, Dept Med Genet, McKusick Nathans Inst, Baltimore, MD USA
[2] Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD USA
[3] Johns Hopkins Sch Med, Solomon H Snyder Dept Neurosci, Baltimore, MD USA
[4] Washington Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, St Louis, MO USA
[5] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
[6] Univ Michigan, Michigan Ctr Translat Pathol, Ann Arbor, MI 48109 USA
[7] Russian Acad Sci, Lab Syst Biol & Computat Genet, Vavilov Inst Gen Genet, Moscow, Russia
[8] Johns Hopkins Univ, Dept Appl Math & Stat, Whiting Sch Engn, Baltimore, MD USA
[9] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
关键词
TRANSCRIPTOMIC ANALYSIS; VARIABILITY; CANCER; GENES; HEAD;
D O I
10.1158/0008-5472.CAN-18-3882
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tumor heterogeneity provides a complex challenge to cancer treatment and is a critical component of therapeutic response, disease recurrence, and patient survival. Single-cell RNA-sequencing (scRNA-seq) technologies have revealed the prevalence of intratumor and intertumor heterogeneity. Computational techniques are essential to quantify the differences in variation of these profiles between distinct cell types, tumor subtypes, and patients to fully characterize intratumor and intertumor molecular heterogeneity. In this study, we adapted our algorithm for pathway dysregulation, Expression Variation Analysis (EVA), to perform multivariate statistical analyses of differential variation of expression in gene sets for scRNA-seq. EVA has high sensitivity and specificity to detect pathways with true differential heterogeneity in simulated data. EVA was applied to several public domain scRNA-seq tumor datasets to quantify the landscape of tumor heterogeneity in several key applications in cancer genomics such as immunogenicity, metastasis, and cancer subtypes. Immune pathway heterogeneity of hematopoietic cell populations in breast tumors corresponded to the amount of diversity present in the T-cell repertoire of each individual. Cells from head and neck squamous cell carcinoma (HNSCC) primary tumors had significantly more heterogeneity across pathways than cells from metastases, consistent with a model of clonal outgrowth. Moreover, there were dramatic differences in pathway dysregulation across HNSCC basal primary tumors. Within the basal primary tumors, there was increased immune dysregulation in individuals with a high proportion of fibroblasts present in the tumor microenvironment. These results demonstrate the broad utility of EVA to quantify intertumor and intratumor heterogeneity from scRNA-seq data without reliance on low-dimensional visualization. Significance: This study presents a robust statistical algorithm for evaluating gene expression heterogeneity within pathways or gene sets in single-cell RNA-seq data
引用
收藏
页码:5102 / 5112
页数:11
相关论文
共 50 条
  • [41] Single-cell RNA-sequencing in asthma research
    Tang, Weifeng
    Li, Mihui
    Teng, Fangzhou
    Cui, Jie
    Dong, Jingcheng
    Wang, Wenqian
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [42] Differential gene expression analysis in single-cell RNA sequencing data
    Wang, Tianyu
    Nabavi, Sheida
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 202 - 207
  • [43] Single-cell isolation by a modular single-cell pipette for RNA-sequencing
    Zhang, Kai
    Gao, Min
    Chong, Zechen
    Li, Ying
    Han, Xin
    Chen, Rui
    Qin, Lidong
    LAB ON A CHIP, 2016, 16 (24) : 4742 - 4748
  • [44] A comprehensive human embryo reference tool using single-cell RNA-sequencing data
    Zhao, Cheng
    Reyes, Alvaro Plaza
    Schell, John Paul
    Weltner, Jere
    Ortega, Nicolas M.
    Zheng, Yi
    Bjorklund, Asa K.
    Baque-vidal, Laura
    Sokka, Joonas
    Torokovic, Ras
    Cox, Brian
    Rossant, Janet
    Fu, Jianping
    Petropoulos, Sophie
    Lanner, Fredrik
    NATURE METHODS, 2025, 22 (01) : 193 - 206
  • [45] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Zhang, Yun
    Aevermann, Brian
    Gala, Rohan
    Scheuermann, Richard H.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [46] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Yun Zhang
    Brian Aevermann
    Rohan Gala
    Richard H. Scheuermann
    Scientific Reports, 12 (1)
  • [47] scPI: A Scalable Framework for Probabilistic Inference in Single-Cell RNA-Sequencing Data Analysis
    Ming, Jingsi
    Zhao, Jia
    Yang, Can
    STATISTICS IN BIOSCIENCES, 2023, 15 (03) : 633 - 656
  • [48] scPI: A Scalable Framework for Probabilistic Inference in Single-Cell RNA-Sequencing Data Analysis
    Jingsi Ming
    Jia Zhao
    Can Yang
    Statistics in Biosciences, 2023, 15 : 633 - 656
  • [49] Improved deconvolution of combined bulk and single-cell RNA-sequencing data
    Lei, Haoyun
    Guo, Xiaoyan A.
    Tao, Yifeng
    Ding, Kai
    Fu, Xuecong
    Oesterreich, Steffi
    Lee, Adrian V.
    Schwartz, Russell
    CANCER RESEARCH, 2022, 82 (12)
  • [50] Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data
    Zhang, Lihua
    Zhang, Shihua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 376 - 389