Cell type matching in single-cell RNA-sequencing data using FR-Match

被引:0
|
作者
Yun Zhang
Brian Aevermann
Rohan Gala
Richard H. Scheuermann
机构
[1] J. Craig Venter Institute,Department of Pathology
[2] Allen Institute for Brain Science,Division of Vaccine Discovery
[3] University of California San Diego,undefined
[4] La Jolla Institute for Immunology,undefined
[5] Chan Zuckerberg Initiative,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reference cell atlases powered by single cell and spatial transcriptomics technologies are becoming available to study healthy and diseased tissue at single cell resolution. One important use of these data resources is to compare cell types from new dataset with cell types in the reference atlases to evaluate their phenotypic similarities and differences, for example, for identifying novel cell types under disease conditions. For this purpose, rigorously-validated computational algorithms are needed to perform these cell type matching tasks that can compare datasets from different experiment platforms and sample types. Here, we present significant enhancements to FR-Match (v2.0)—a multivariate nonparametric statistical testing approach for matching cell types in query datasets to reference atlases. FR-Match v2.0 includes a normalization procedure to facilitate cross-platform cluster-level comparisons (e.g., plate-based SMART-seq and droplet-based 10X Chromium single cell and single nucleus RNA-seq and spatial transcriptomics) and extends the pipeline to also allow cell-level matching. In the use cases evaluated, FR-Match showed robust and accurate performance for identifying common and novel cell types across tissue regions, for discovering sub-optimally clustered cell types, and for cross-platform and cross-sample cell type matching.
引用
收藏
相关论文
共 50 条
  • [1] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Zhang, Yun
    Aevermann, Brian
    Gala, Rohan
    Scheuermann, Richard H.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [2] FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman-Rafsky non-parametric test
    Zhang, Yun
    Aevermann, Brian D.
    Bakken, Trygve E.
    Miller, Jeremy A.
    Hodge, Rebecca D.
    Lein, Ed S.
    Scheuermann, Richard H.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [3] Clustering single-cell rna-sequencing data based on matching clusters structures
    Wang, Yizhang
    Zhou, You
    Pang, Wie
    Liang, Yanchun
    Wang, Shu
    Tehnicki Vjesnik, 2020, 27 (01): : 89 - 95
  • [4] Clustering Single-cell RNA-sequencing Data based on Matching Clusters Structures
    Wang, Yizhang
    Zhou, You
    Pang, Wie
    Liang, Yanchun
    Wang, Shu
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2020, 27 (01): : 89 - 95
  • [5] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [6] Single-Cell RNA-Sequencing in Glioma
    Eli Johnson
    Katherine L. Dickerson
    Ian D. Connolly
    Melanie Hayden Gephart
    Current Oncology Reports, 2018, 20
  • [7] Transcriptomics and single-cell RNA-sequencing
    Chambers, Daniel C.
    Carew, Alan M.
    Lukowski, Samuel W.
    Powell, Joseph E.
    RESPIROLOGY, 2019, 24 (01) : 29 - 36
  • [8] Single-Cell RNA-Sequencing in Glioma
    Johnson, Eli
    Dickerson, Katherine L.
    Connolly, Ian D.
    Gephart, Melanie Hayden
    CURRENT ONCOLOGY REPORTS, 2018, 20 (05)
  • [9] Single-cell RNA-sequencing of the brain
    Duran, Raquel Cuevas-Diaz
    Wei, Haichao
    Wu, Jia Qian
    CLINICAL AND TRANSLATIONAL MEDICINE, 2017, 6
  • [10] scAnnotate: an automated cell-type annotation tool for single-cell RNA-sequencing data
    Ji, Xiangling
    Tsao, Danielle
    Bai, Kailun
    Tsao, Min
    Xing, Li
    Zhang, Xuekui
    BIOINFORMATICS ADVANCES, 2023, 3 (01):