Cell type matching in single-cell RNA-sequencing data using FR-Match

被引:0
|
作者
Yun Zhang
Brian Aevermann
Rohan Gala
Richard H. Scheuermann
机构
[1] J. Craig Venter Institute,Department of Pathology
[2] Allen Institute for Brain Science,Division of Vaccine Discovery
[3] University of California San Diego,undefined
[4] La Jolla Institute for Immunology,undefined
[5] Chan Zuckerberg Initiative,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reference cell atlases powered by single cell and spatial transcriptomics technologies are becoming available to study healthy and diseased tissue at single cell resolution. One important use of these data resources is to compare cell types from new dataset with cell types in the reference atlases to evaluate their phenotypic similarities and differences, for example, for identifying novel cell types under disease conditions. For this purpose, rigorously-validated computational algorithms are needed to perform these cell type matching tasks that can compare datasets from different experiment platforms and sample types. Here, we present significant enhancements to FR-Match (v2.0)—a multivariate nonparametric statistical testing approach for matching cell types in query datasets to reference atlases. FR-Match v2.0 includes a normalization procedure to facilitate cross-platform cluster-level comparisons (e.g., plate-based SMART-seq and droplet-based 10X Chromium single cell and single nucleus RNA-seq and spatial transcriptomics) and extends the pipeline to also allow cell-level matching. In the use cases evaluated, FR-Match showed robust and accurate performance for identifying common and novel cell types across tissue regions, for discovering sub-optimally clustered cell types, and for cross-platform and cross-sample cell type matching.
引用
收藏
相关论文
共 50 条
  • [41] Defining mammary basal cell transcriptional states using single-cell RNA-sequencing
    Guadalupe Gutierrez
    Peng Sun
    Yingying Han
    Xing Dai
    Scientific Reports, 12
  • [42] Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
    Mereu, Elisabetta
    Lafzi, Atefeh
    Moutinho, Catia
    Ziegenhain, Christoph
    McCarthy, Davis J.
    Alvarez-Varela, Adrian
    Batlle, Eduard
    Sagar
    Gruen, Dominic
    Lau, Julia K.
    Boutet, Stephane C.
    Sanada, Chad
    Ooi, Aik
    Jones, Robert C.
    Kaihara, Kelly
    Brampton, Chris
    Talaga, Yasha
    Sasagawa, Yohei
    Tanaka, Kaori
    Hayashi, Tetsutaro
    Braeuning, Caroline
    Fischer, Cornelius
    Sauers, Sascha
    Trefzer, Timo
    Conrad, Christian
    Adiconis, Xian
    Nguyen, Lan T.
    Regev, Aviv
    Levin, Joshua Z.
    Parekh, Swati
    Janjic, Aleksandar
    Wange, Lucas E.
    Bagnoli, Johannes W.
    Enard, Wolfgang
    Gut, Marta
    Sandberg, Rickard
    Nikaido, Itoshi
    Gut, Ivo
    Stegle, Oliver
    Heyn, Holger
    NATURE BIOTECHNOLOGY, 2020, 38 (06) : 747 - +
  • [43] Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma
    Huang, Ruichao
    Wang, Xiaohu
    Yin, Xiangyun
    Zhou, Yaqi
    Sun, Jiansheng
    Yin, Zhongxiu
    Zhu, Zhi
    FRONTIERS IN GENETICS, 2022, 13
  • [44] Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
    Elisabetta Mereu
    Atefeh Lafzi
    Catia Moutinho
    Christoph Ziegenhain
    Davis J. McCarthy
    Adrián Álvarez-Varela
    Eduard Batlle
    Dominic Sagar
    Julia K. Grün
    Stéphane C. Lau
    Chad Boutet
    Aik Sanada
    Robert C. Ooi
    Kelly Jones
    Chris Kaihara
    Yasha Brampton
    Yohei Talaga
    Kaori Sasagawa
    Tetsutaro Tanaka
    Caroline Hayashi
    Cornelius Braeuning
    Sascha Fischer
    Timo Sauer
    Christian Trefzer
    Xian Conrad
    Lan T. Adiconis
    Aviv Nguyen
    Joshua Z. Regev
    Swati Levin
    Aleksandar Parekh
    Lucas E. Janjic
    Johannes W. Wange
    Wolfgang Bagnoli
    Marta Enard
    Rickard Gut
    Itoshi Sandberg
    Ivo Nikaido
    Oliver Gut
    Holger Stegle
    Nature Biotechnology, 2020, 38 : 747 - 755
  • [45] Constructing Simulation Data with Dependence Structure for Unreliable Single-Cell RNA-Sequencing Data Using Copulas
    Fuetterer, Cornelia
    Schollmeyer, Georg
    Augustin, Thomas
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 216 - 224
  • [46] Decoding the role of macrophages in periodontitis and type 2 diabetes using single-cell RNA-sequencing
    Agrafioti, Panagiota
    Morin-Baxter, Joshua
    Tanagala, Kranthi K. K.
    Dubey, Sunil
    Sims, Peter
    Lalla, Evanthia
    Momen-Heravi, Fatemeh
    FASEB JOURNAL, 2022, 36 (02):
  • [47] A Data-Driven Clustering Recommendation Method for Single-Cell RNA-Sequencing Data
    Tian, Yu
    Zheng, Ruiqing
    Liang, Zhenlan
    Li, Suning
    Wu, Fang-Xiang
    Li, Min
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (05) : 772 - 789
  • [48] A Data-Driven Clustering Recommendation Method for Single-Cell RNA-Sequencing Data
    Yu Tian
    Ruiqing Zheng
    Zhenlan Liang
    Suning Li
    Fang-Xiang Wu
    Min Li
    TsinghuaScienceandTechnology, 2021, 26 (05) : 772 - 789
  • [49] Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references
    Pool, Allan-Hermann
    Poldsam, Helen
    Chen, Sisi
    Thomson, Matt
    Oka, Yuki
    NATURE METHODS, 2023, 20 (10) : 1506 - +
  • [50] Reusability report: Learning the transcriptional grammar in single-cell RNA-sequencing data using transformers
    Sumeer Ahmad Khan
    Alberto Maillo
    Vincenzo Lagani
    Robert Lehmann
    Narsis A. Kiani
    David Gomez-Cabrero
    Jesper Tegner
    Nature Machine Intelligence, 2023, 5 : 1437 - 1446