Weak asymptotics of the spectral shift function

被引:1
|
作者
Bruneau, Vincent
Dimassi, Mouez [1 ]
机构
[1] Univ Paris 13, Dept Math, Villetaneuse, France
[2] Univ Bordeaux 1, Inst Math Bordeaux, CNRS, UMR 5251, F-33405 Talence, France
关键词
schrodinger operator; spectral shift function; operator valued pseudodifferential operators;
D O I
10.1002/mana.200410549
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the three-dimensional Schrodinger operator with constant magnetic field of strength b > 0, and 14 with smooth electric potential. The weak asymptotics of the spectral shift function with respect to b NE arrow +infinity is studied. First, we fix the distance to the Landau levels, then the distance to Landau levels tends to infinity as b NE arrow +infinity. In particular we give explicitly the leading terms in the asymptotics and in some case we obtain full asymptotics expansions. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1230 / 1243
页数:14
相关论文
共 50 条
  • [21] EFFICIENT BOUNDS FOR THE SPECTRAL SHIFT FUNCTION
    SOBOLEV, AV
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1993, 58 (01): : 55 - 83
  • [22] The spectral shift function and the invariance principle
    Pushnitski, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (02) : 269 - 320
  • [23] The Spectral Shift Function and the Witten Index
    Carey, Alan
    Gesztesy, Fritz
    Levitina, Galina
    Sukochev, Fedor
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 : 71 - 105
  • [24] SPECTRAL SHIFT FUNCTION AND TRACE FORMULA
    SINHA, KB
    MOHAPATRA, AN
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1994, 104 (04): : 819 - 853
  • [25] Spectral shift function of higher order
    Potapov, Denis
    Skripka, Anna
    Sukochev, Fedor
    INVENTIONES MATHEMATICAE, 2013, 193 (03) : 501 - 538
  • [26] Spectral shift function, amazing and multifaceted
    Birman, MS
    Pushnitski, AB
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 30 (02) : 191 - 199
  • [27] A SPECTRAL-FUNCTION ASYMPTOTICS FOR A CLASS OF HYPOELLIPTIC-OPERATORS
    LOPATNIKOV, AM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1988, (01): : 92 - 94
  • [28] Asymptotics for the spectral heat function and bounds for integrals of Dirichlet eigenfunctions
    van den Berg, M
    Watson, SP
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 841 - 854
  • [29] Semi-classical asymptotics of the spectral function of pseudodifferential operators
    Butler, J
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (1-2) : 57 - 113
  • [30] CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION
    GEISLER, R
    KOSTRYKIN, V
    SCHRADER, R
    REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (02) : 161 - 181