Entropy rigidity and harmonic fields

被引:2
|
作者
Macarini, L [1 ]
机构
[1] Inst Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0951-7715/13/5/317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of entropy rigidity in the sense of Gromov-Katok for deformations of the geodesic flow by twisting the symplectic form by a closed 2-form Omega in M corresponding to a magnetic term. we show that if M is a hyperbolic manifold, then the origin is a convex point of the function given by the difference of the topological and Liouville entropies and has vanishing second derivative iff Omega is harmonic, giving a dynamical characterization of such forms. In particular, we have strict convexity for Euler-Lagrange deformations. AMS classification scheme numbers: 58F15, 58F17, 58F05.
引用
收藏
页码:1761 / 1774
页数:14
相关论文
共 50 条
  • [41] Diastatic entropy and rigidity of complex hyperbolic manifolds
    Mossa, Roberto
    COMPLEX MANIFOLDS, 2016, 3 (01): : 186 - 192
  • [42] Entropy rigidity of Anosov flows in dimension three
    Foulon, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 1101 - 1112
  • [43] Minimal entropy rigidity for foliations of compact spaces
    Jeffrey Boland
    Christopher Connell
    Israel Journal of Mathematics, 2002, 128 : 221 - 246
  • [44] Rigidity and stability of submanifolds with entropy close to one
    Letian Chen
    Geometriae Dedicata, 2021, 215 : 133 - 145
  • [45] Conformal entropy rigidity through Yamabe flows
    Pablo Suárez-Serrato
    Samuel Tapie
    Mathematische Annalen, 2012, 353 : 333 - 357
  • [46] INVARIANCE PRINCIPLE AND RIGIDITY OF HIGH ENTROPY MEASURES
    Tahzibi, Ali
    Yang, Jiagang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1231 - 1251
  • [47] Harmonic endomorphism fields
    GarciaRio, E
    Vanhecke, L
    VazquezAbal, ME
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (01) : 23 - 30
  • [48] ENTROPY AND FREQUENCY OF A HARMONIC OSCILLATOR
    SLIFKIN, L
    AMERICAN JOURNAL OF PHYSICS, 1965, 33 (05) : 408 - &
  • [49] DISORDER, ENTROPY AND HARMONIC FUNCTIONS
    Benjamini, Itai
    Duminil-Copin, Hugo
    Kozma, Gady
    Yadin, Ariel
    ANNALS OF PROBABILITY, 2015, 43 (05): : 2332 - 2373
  • [50] Harmonic radial vector fields on harmonic spaces
    Gilkey, P. B.
    Park, J. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (02)