Entropy rigidity and harmonic fields

被引:2
|
作者
Macarini, L [1 ]
机构
[1] Inst Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0951-7715/13/5/317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of entropy rigidity in the sense of Gromov-Katok for deformations of the geodesic flow by twisting the symplectic form by a closed 2-form Omega in M corresponding to a magnetic term. we show that if M is a hyperbolic manifold, then the origin is a convex point of the function given by the difference of the topological and Liouville entropies and has vanishing second derivative iff Omega is harmonic, giving a dynamical characterization of such forms. In particular, we have strict convexity for Euler-Lagrange deformations. AMS classification scheme numbers: 58F15, 58F17, 58F05.
引用
收藏
页码:1761 / 1774
页数:14
相关论文
共 50 条
  • [21] A SHORT PROOF TO THE RIGIDITY OF VOLUME ENTROPY
    Liu, Gang
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (01) : 151 - 153
  • [22] Entropy collapse versus entropy rigidity for Reeb and Finsler flows
    Abbondandolo, Alberto
    Alves, Marcelo R. R.
    Saglam, Murat
    Schlenk, Felix
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (05):
  • [23] Entropy Rigidity of Hilbert and Riemannian Metrics
    Barthelme, Thomas
    Marquis, Ludovic
    Zimmer, Andrew
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (22) : 6841 - 6866
  • [24] Isomorphism rigidity in entropy rank two
    Manfred Einsiedler
    Thomas Ward
    Israel Journal of Mathematics, 2005, 147 : 269 - 284
  • [25] Entropy collapse versus entropy rigidity for Reeb and Finsler flows
    Alberto Abbondandolo
    Marcelo R. R. Alves
    Murat Sağlam
    Felix Schlenk
    Selecta Mathematica, 2023, 29
  • [26] Rigidity of τ-quasi Ricci-harmonic metrics
    Fanqi Zeng
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 431 - 449
  • [27] EXTRINSIC RIGIDITY FOR EQUIVARIANT HARMONIC MAPS INTO SPHERES
    TOTH, G
    DAMBRA, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3A (02): : 249 - 255
  • [28] Rigidity of noncompact complete manifolds with harmonic curvature
    Seongtag Kim
    Manuscripta Mathematica, 2011, 135 : 107 - 116
  • [29] Rigidity of noncompact complete manifolds with harmonic curvature
    Kim, Seongtag
    MANUSCRIPTA MATHEMATICA, 2011, 135 (1-2) : 107 - 116
  • [30] REMARK ON RIGIDITY OVER SEVERAL FIELDS
    Yagunov, Serge
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2011, 13 (02) : 159 - 164