Euler characteristic of the truncated order complex of generalized noncrossing partitions

被引:0
|
作者
Armstrong, D. [1 ]
Krattenthaler, C. [2 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL 33146 USA
[2] Univ Vienna, Fak Math, A-1090 Vienna, Austria
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
关键词
root systems; reflection groups; Coxeter groups; generalized non-crossing partitions; chain enumeration; Euler characteristics; Chu-Vandermonde summation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to complete the study, begun in the first author's PhD thesis, of the topology of the poset of generalized non crossing partitions associated to real reflection groups. In particular, we calculate the Euler characteristic of this poset with the maximal and minimal elements deleted. As we show, the result on the Euler characteristic extends to generalized non crossing partitions associated to well-generated complex reflection groups.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Euler characteristic of the Gauss-Manin complex
    Eyssidieux, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 490 : 155 - 212
  • [22] Some examples of stable generalized complex 6-manifolds with either 0 or negative Euler characteristic
    Mun, Ui Ri
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 78
  • [23] Homology and Euler characteristic of generalized anchored configuration spaces of graphs
    Kozlov D.N.
    Journal of Applied and Computational Topology, 2024, 8 (4) : 1053 - 1067
  • [24] Experimental Investigation of the Generalized Euler Characteristic of the Networks Split at Edges
    Farooq, Omer
    Akhshani, Afshin
    Bialous, Malgorzata
    Bauch, Szymon
    Lawniczak, Michal
    Sirko, Leszek
    MATHEMATICS, 2022, 10 (20)
  • [25] The Euler characteristic: A general topological descriptor for complex data
    Smith, Alexander
    Zavala, Victor M.
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 154
  • [26] The Euler characteristic and topological phase transitions in complex systems
    de Amorim Filho, Edgar C.
    Moreira, Rodrigo A.
    Santos, Fernando A. N.
    JOURNAL OF PHYSICS-COMPLEXITY, 2022, 3 (02):
  • [27] A second type of higher order generalized geometric polynomials and higher order generalized Euler polynomials
    Corcino, Cristina B.
    Corcino, Roberto B.
    Cekim, Bayram
    Kargin, Levent
    Nkonkobe, Sithembele
    QUAESTIONES MATHEMATICAE, 2022, 45 (01) : 71 - 89
  • [28] On the generalized solutions of a certain fourth order Euler equations
    Liangprom, Amphon
    Nonlaopon, Kamsing
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4077 - 4084
  • [29] Higher order generalized Euler characteristics and generating series
    Gusein-Zade, S. M.
    Luengo, I.
    Melle-Hernandez, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 95 : 137 - 143
  • [30] Order monotonic solutions for generalized characteristic functions
    van den Brink, Rene
    Gonzalez-Arangueena, Enrique
    Manuel, Conrado
    del Pozo, Monica
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 238 (03) : 786 - 796