On the generalized solutions of a certain fourth order Euler equations

被引:6
|
作者
Liangprom, Amphon [1 ]
Nonlaopon, Kamsing [1 ]
机构
[1] Khon Kaen Univ, Dept Math, Khon Kaen 40002, Thailand
来源
关键词
Generalized solution; distributional solution; Euler equation; Dirac delta function; FUNCTIONAL-DIFFERENTIAL EQUATIONS; DISTRIBUTIONAL SOLUTIONS; COEXISTENCE;
D O I
10.22436/jnsa.010.08.04
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using Laplace transform technique, we propose the generalized solutions of the fourth order Euler differential equations t(4)y((4)) (t) + t(3)y''' (t) + t(2)y '' (t) + ty' (t) + my (t) = 0, where m is an integer and t is an element of R. We find types of solutions depend on the values of m. Precisely, we have a distributional solution for m = -k(4) - 5k(3) - 9k(2) - 4k and a weak solution for m = -k(4) + 5k(3) - 9k(2) + 4k, where k is an element of N. (C) 2017 All rights reserved.
引用
收藏
页码:4077 / 4084
页数:8
相关论文
共 50 条