The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law

被引:26
|
作者
Li, Changpin [1 ]
Wang, Zhen [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo derivative; Discontinuous Galerkin method; Stability; Convergence; FRACTIONAL DIFFUSION; RANDOM-WALKS; SUPERCONVERGENCE; ALGORITHM; EQUATIONS; SCHEME; MESHES;
D O I
10.1016/j.matcom.2019.09.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, efficient methods for numerical solutions of Caputo-type nonlinear conservation laws are established and studied, where the time fractional derivative with order in (0, 1) is discretized by the finite difference method and the spatial derivative by the discontinuous Galerkin finite element method. The derived numerical schemes for one and two space dimensions are shown to be stable and convergent. Numerical experiments are provided to support these conclusions. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B. V. All rights reserved.
引用
收藏
页码:51 / 73
页数:23
相关论文
共 50 条
  • [31] The Discontinuous Galerkin Finite Element Time Domain Method (DGFETD)
    Gedney, S. D.
    Kramer, T.
    Luo, C.
    Roden, J. A.
    Crawford, R.
    Guernsey, B.
    Beggs, John
    Miller, J. A.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1-3, 2008, : 768 - +
  • [32] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Thirupathi Gudi
    Neela Nataraj
    Amiya K. Pani
    Journal of Scientific Computing, 2008, 37 : 139 - 161
  • [33] An implicit discontinuous Galerkin finite element method for watet waves
    van der Vegt, JJW
    Tomar, SK
    COMPUTATIONAL MECHANICS, PROCEEDINGS, 2004, : 690 - 695
  • [34] Application of a discontinuous Galerkin finite element method to liquid sloshing
    Guillot, MJ
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2006, 128 (01): : 1 - 10
  • [35] A moving discontinuous Galerkin finite element method for flows with interfaces
    Corrigan, Andrew
    Kercher, Andrew D.
    Kessler, David A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 89 (09) : 362 - 406
  • [36] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Gudi, Thirupathi
    Nataraj, Neela
    Pani, Amiya K.
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (02) : 139 - 161
  • [37] A Discontinuous Galerkin Finite Element Time Domain Method with PML
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Lucas, Eric W.
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 2014 - +
  • [38] A CONFORMING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD ON RECTANGULAR PARTITIONS
    Feng, Yue
    Liu, Yujie
    Wang, Ruishu
    Zhang, Shangyou
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (03): : 2375 - 2389
  • [39] Predictor-Corrector LU-SGS Discontinuous Galerkin Finite Element Method for Conservation Laws
    Ma, Xinrong
    Liu, Sanyang
    Xie, Gongnan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [40] A Discontinuous Galerkin Method for Conservation Laws Coupled with Algebraic-Type Nonlinear Constitutive Equations
    Le, N. T. P.
    Myong, R. S.
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 443 - 450