The one-loop pentagon to higher orders in ε

被引:26
|
作者
Del Duca, Vittorio [1 ]
Duhr, Claude [2 ,3 ]
Glover, E. W. Nigel [4 ]
Smirnov, Vladimir A. [5 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Roma, Italy
[2] Catholic Univ Louvain, Inst Phys Theor, B-1348 Louvain, Belgium
[3] Catholic Univ Louvain, CP3, B-1348 Louvain, Belgium
[4] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
[5] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119992, Russia
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2010年 / 01期
基金
俄罗斯基础研究基金会;
关键词
Supersymmetric gauge theory; Gauge Symmetry; QCD; HEXAGON WILSON LOOP; TRANSCENDENTAL FUNCTIONS; NUMERICAL EVALUATION; AMPLITUDES; SUMS;
D O I
10.1007/JHEP01(2010)042
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the one-loop scalar massless pentagon integral I-5(6)-2 epsilon in D = 6-2 epsilon dimensions in the limit of multi-Regge kinematics. This integral first contributes to the parity-odd part of the one-loop N = 4 five-point MHV amplitude m(5)((1)) at O(epsilon). In the high energy limit defined by s >> s(1), s(2) >> -t(1), -t(2), the pentagon integral reduces to double sums or equivalently twofold Mellin-Barnes integrals. By determining the O(epsilon) contribution to I-5(6)-2 epsilon, one therefore gains knowledge of m(5)((1)) to O(epsilon(2)) which is necessary for studies of the iterative structure of N = 4 SYM amplitudes beyond one-loop. One immediate application is the extraction of the one-loop gluon-production vertex to O(epsilon(2)) and the iterative construction of the two-loop gluon-production vertex including finite terms which is described in a companion paper [1]. The analytic methods we have used for evaluating the one-loop pentagon integral in the high energy limit may also be applied to the hexagon integral and may ultimately give information on the form of the R-6((2)) remainder function.
引用
收藏
页数:61
相关论文
共 50 条
  • [41] Higher spin quasinormal modes and one-loop determinants in the BTZ black hole
    Shouvik Datta
    Justin R. David
    Journal of High Energy Physics, 2012
  • [42] Higher spin quasinormal modes and one-loop determinants in the BTZ black hole
    Datta, Shouvik
    David, Justin R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):
  • [43] One-loop gluon amplitudes in AdS
    Alday, Luis F.
    Bissi, Agnese
    Zhou, Xinan
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [44] One-loop amplitudes on the Riemann sphere
    Yvonne Geyer
    Lionel Mason
    Ricardo Monteiro
    Piotr Tourkine
    Journal of High Energy Physics, 2016
  • [45] One-loop anisotropy for improved actions
    Perez, MG
    vanBaal, P
    PHYSICS LETTERS B, 1997, 392 (1-2) : 163 - 171
  • [46] ONE-LOOP MULTIPHOTON HELICITY AMPLITUDES
    MAHLON, G
    PHYSICAL REVIEW D, 1994, 49 (05): : 2197 - 2210
  • [47] On the rational terms of the one-loop amplitudes
    Ossola, Giovanni
    Papadopoulos, Costas G.
    Pittau, Roberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05):
  • [48] FERMIONS IN ONE-LOOP QUANTUM COSMOLOGY
    KAMENSHCHIK, AY
    MISHAKOV, IV
    PHYSICAL REVIEW D, 1993, 47 (04): : 1380 - 1390
  • [49] Updates to the one-loop provider NLOX
    Figueroa, Diogenes
    Quackenbush, Seth
    Reina, Laura
    Reuschle, Christian
    Computer Physics Communications, 2022, 270
  • [50] One-loop approximation for the Hubbard model
    Sherman, A
    PHYSICAL REVIEW B, 2006, 73 (15):