The one-loop pentagon to higher orders in ε

被引:26
|
作者
Del Duca, Vittorio [1 ]
Duhr, Claude [2 ,3 ]
Glover, E. W. Nigel [4 ]
Smirnov, Vladimir A. [5 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Roma, Italy
[2] Catholic Univ Louvain, Inst Phys Theor, B-1348 Louvain, Belgium
[3] Catholic Univ Louvain, CP3, B-1348 Louvain, Belgium
[4] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
[5] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119992, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
Supersymmetric gauge theory; Gauge Symmetry; QCD; HEXAGON WILSON LOOP; TRANSCENDENTAL FUNCTIONS; NUMERICAL EVALUATION; AMPLITUDES; SUMS;
D O I
10.1007/JHEP01(2010)042
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the one-loop scalar massless pentagon integral I-5(6)-2 epsilon in D = 6-2 epsilon dimensions in the limit of multi-Regge kinematics. This integral first contributes to the parity-odd part of the one-loop N = 4 five-point MHV amplitude m(5)((1)) at O(epsilon). In the high energy limit defined by s >> s(1), s(2) >> -t(1), -t(2), the pentagon integral reduces to double sums or equivalently twofold Mellin-Barnes integrals. By determining the O(epsilon) contribution to I-5(6)-2 epsilon, one therefore gains knowledge of m(5)((1)) to O(epsilon(2)) which is necessary for studies of the iterative structure of N = 4 SYM amplitudes beyond one-loop. One immediate application is the extraction of the one-loop gluon-production vertex to O(epsilon(2)) and the iterative construction of the two-loop gluon-production vertex including finite terms which is described in a companion paper [1]. The analytic methods we have used for evaluating the one-loop pentagon integral in the high energy limit may also be applied to the hexagon integral and may ultimately give information on the form of the R-6((2)) remainder function.
引用
收藏
页数:61
相关论文
共 50 条
  • [21] Two-loop Bhabha scattering in QED: Vertex and one-loop by one-loop contributions
    Bonciani, R
    Ferroglia, A
    PHYSICAL REVIEW D, 2005, 72 (05):
  • [22] Reduction of one-loop integrals with higher poles by unitarity cut method
    Feng, Bo
    Wang, Hongbin
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [23] One-loop effective actions and higher spins. Part II
    Bonora, L.
    Cvitan, M.
    Prester, P. Dominis
    Giaccari, S.
    Stemberga, T.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [24] One-loop Lipatov vertex in QCD with higher E-accuracy
    Fadin, Victor S.
    Fucilla, Michael
    Papa, Alessandro
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (04)
  • [25] Reduction of one-loop integrals with higher poles by unitarity cut method
    Bo Feng
    Hongbin Wang
    Journal of High Energy Physics, 2021
  • [26] One-loop effective actions and higher spins. Part II
    L. Bonora
    M. Cvitan
    P. Dominis Prester
    S. Giaccari
    T. Štemberga
    Journal of High Energy Physics, 2018
  • [27] One-loop structure of higher rank Wilson loops in AdS/CFT
    Faraggi, Alberto
    Liu, James T.
    Zayas, Leopoldo A. Pando
    Zhang, Guojun
    PHYSICS LETTERS B, 2015, 740 : 218 - 221
  • [28] Inflation as a One-Loop Effect
    Arbuzov, A. B.
    Kuznetsov, D. A.
    Latosh, B. N.
    Shmidt, V.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2024, 21 (03) : 460 - 465
  • [29] One-loop Fierz transformations
    Aebischer, Jason
    Pesut, Marko
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (10)
  • [30] The one-loop functional as a Berezinian
    Neufeld, H
    Gasser, J
    Ecker, G
    PHYSICS LETTERS B, 1998, 438 (1-2) : 106 - 114