Some generalized fractional integral inequalities with nonsingular function as a kernel

被引:5
|
作者
Mubeen, Shahid [1 ]
Ali, Rana Safdar [1 ]
Nayab, Iqra [2 ]
Rahman, Gauhar [3 ]
Nisar, Kottakkaran Sooppy [4 ]
Baleanu, Dumitru [5 ,6 ,7 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
[2] Univ Lahore, Dept Math, Lahore, Pakistan
[3] Hazara Univ, Dept Math & Stat, Mansehra, Pakistan
[4] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawser 11991, Saudi Arabia
[5] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[6] Inst Space Sci, Magurele 077125, Romania
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 04期
关键词
convexity; generalized multi-index Bessel function; inequalities and integral operators; fractional derivatives and integrals; GRUSS TYPE;
D O I
10.3934/math.2021201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as a kernel and then to obtain some significant inequalities like Hermit Hadamard Mercer inequality, exponentially (s - m)-preinvex inequalities, Polya-Szego and Chebyshev type integral inequalities with the newly developed fractional operator. These results describe in general behave and provide the extension of fractional operator theory (FOT) in inequalities.
引用
收藏
页码:3352 / 3377
页数:26
相关论文
共 50 条
  • [41] Simpson type integral inequalities for generalized fractional integral
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3115 - 3124
  • [42] Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function
    Abbas, G.
    Farid, G.
    COGENT MATHEMATICS, 2016, 3
  • [43] Some fractional proportional integral inequalities
    Rahman, Gauhar
    Abdeljawad, Thabet
    Khan, Aftab
    Nisar, Kottakkaran Sooppy
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [44] SOME NEW FRACTIONAL INTEGRAL INEQUALITIES
    Sulaiman, W. T.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 2 (02): : 23 - 28
  • [45] Some generalized Riemann-Liouville k-fractional integral inequalities
    Agarwal, Praveen
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [46] Some Remarks on Local Fractional Integral Inequalities Involving Mittag-Leffler Kernel Using Generalized (E, h)-Convexity
    Saleh, Wedad
    Lakhdari, Abdelghani
    Almutairi, Ohud
    Kilicman, Adem
    MATHEMATICS, 2023, 11 (06)
  • [47] On Some Fractional Quadratic Integral Inequalities
    El-Sayed, Ahmed M. A.
    Hashem, Hind H. G.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (01): : 211 - 222
  • [48] Some fractional proportional integral inequalities
    Gauhar Rahman
    Thabet Abdeljawad
    Aftab Khan
    Kottakkaran Sooppy Nisar
    Journal of Inequalities and Applications, 2019
  • [49] Some new Chebyshev type inequalities utilizing generalized fractional integral operators
    Usta, Fuat
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    AIMS MATHEMATICS, 2020, 5 (02): : 1147 - 1161
  • [50] Some Gruss-type inequalities using generalized Katugampola fractional integral
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    AIMS MATHEMATICS, 2020, 5 (02): : 1011 - 1024