Some generalized fractional integral inequalities with nonsingular function as a kernel

被引:5
|
作者
Mubeen, Shahid [1 ]
Ali, Rana Safdar [1 ]
Nayab, Iqra [2 ]
Rahman, Gauhar [3 ]
Nisar, Kottakkaran Sooppy [4 ]
Baleanu, Dumitru [5 ,6 ,7 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
[2] Univ Lahore, Dept Math, Lahore, Pakistan
[3] Hazara Univ, Dept Math & Stat, Mansehra, Pakistan
[4] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawser 11991, Saudi Arabia
[5] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[6] Inst Space Sci, Magurele 077125, Romania
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 04期
关键词
convexity; generalized multi-index Bessel function; inequalities and integral operators; fractional derivatives and integrals; GRUSS TYPE;
D O I
10.3934/math.2021201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as a kernel and then to obtain some significant inequalities like Hermit Hadamard Mercer inequality, exponentially (s - m)-preinvex inequalities, Polya-Szego and Chebyshev type integral inequalities with the newly developed fractional operator. These results describe in general behave and provide the extension of fractional operator theory (FOT) in inequalities.
引用
收藏
页码:3352 / 3377
页数:26
相关论文
共 50 条
  • [31] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    FILOMAT, 2015, 29 (06) : 1307 - 1314
  • [32] On Some Generalized Fractional Integral Inequalities for p-Convex Functions
    Salas, Seren
    Erdas, Yeter
    Toplu, Tekin
    Set, Erhan
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 9
  • [33] Some generalized fractional integral Simpson's type inequalities with applications
    Hussain, Sabir
    Khalid, Javairiya
    Chu, Yu Ming
    AIMS MATHEMATICS, 2020, 5 (06): : 5859 - 5883
  • [34] Integral inequalities for some convex functions via generalized fractional integrals
    Naila Mehreen
    Matloob Anwar
    Journal of Inequalities and Applications, 2018
  • [35] Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators
    Srivastava, Hari Mohan
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [36] Integral inequalities for some convex functions via generalized fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [37] SOME FRACTIONAL INTEGRAL INEQUALITIES INVOLVING APPELL HYPERGEOMETRIC FUNCTION
    Joshi, Sunil
    Mittal, Ekta
    Pandey, Rupakshi Mishra
    JOURNAL OF SCIENCE AND ARTS, 2016, (01): : 23 - 30
  • [38] Some New Fractional Inequalities Involving Convex Functions and Generalized Fractional Integral Operator
    Neamah, Majid K.
    Ibrahim, Alawiah
    Mehdy, Hala Shaker
    Redhwan, Saleh S.
    Abdo, Mohammed S.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [39] Some Integral Inequalities Involving a Fractional Integral Operator with Extended Hypergeometric Function
    Yadav, Anil Kumar
    Pandey, Rupakshi Mishra
    Mishra, Vishnu Narayan
    Agarwal, Ritu
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2025, 18
  • [40] Simpson type integral inequalities for generalized fractional integral
    Fatma Ertuğral
    Mehmet Zeki Sarikaya
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3115 - 3124