On (local) analysis of multifunctions via subspaces contained in graphs of generalized derivatives

被引:9
|
作者
Gfrerer, Helmut [1 ]
Outrata, Jiri, V [2 ,3 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Czech Acad Sci, Inst Informat Theory & Automat, Prague 18208, Czech Republic
[3] Federat Univ Australia, Ctr Informat & Appl Optimizat, POB 663, Ballarat, Vic 3350, Australia
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
Generalized derivatives; Second-order theory; Strong metric (sub)regularity; Semismoothness*; METRIC REGULARITY; TILT STABILITY; SUBREGULARITY; LIPSCHITZIAN; THEOREMS;
D O I
10.1016/j.jmaa.2021.125895
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with a comprehensive theory of mappings, whose local behavior can be described by means of linear subspaces, contained in the graphs of two (primal and dual) generalized derivatives. This class of mappings includes the graphically Lipschitzian mappings and thus a number of multifunctions, frequently arising in optimization and equilibrium problems. The developed theory makes use of new generalized derivatives, provides us with some calculus rules and reveals a number of interesting connections. In particular, it enables us to construct a modification of the semismooth* Newton method with improved convergence properties and to derive a generalization of Clarke's Inverse Function Theorem to multifunctions together with new efficient characterizations of strong metric (sub)regularity and tilt stability.(c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Solving Problems on Generalized Convex Graphs via Mim-Width
    Bonomo-Braberman, Flavia
    Brettell, Nick
    Munaro, Andrea
    Paulusma, Daniel
    ALGORITHMS AND DATA STRUCTURES, WADS 2021, 2021, 12808 : 200 - 214
  • [42] Synthesis of generalized immitance converters via signal-flow graphs
    Pierzchala, Marian
    Fakhfakh, Mourad
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 113
  • [43] An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs
    Dragan, Feodor F.
    Koehler, Ekkehard
    ALGORITHMICA, 2014, 69 (04) : 884 - 905
  • [44] An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs
    Feodor F. Dragan
    Ekkehard Köhler
    Algorithmica, 2014, 69 : 884 - 905
  • [45] The Local Structure of Claw-Free Graphs Without Induced Generalized Bulls
    Du, Junfeng
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2019, 35 (05) : 1091 - 1103
  • [46] The Local Structure of Claw-Free Graphs Without Induced Generalized Bulls
    Junfeng Du
    Liming Xiong
    Graphs and Combinatorics, 2019, 35 : 1091 - 1103
  • [47] Generalized quasiharmonic approximation via space group irreducible derivatives
    Mathis, Mark A.
    Khanolkar, Amey
    Fu, Lyuwen
    Bryan, Matthew S.
    Dennett, Cody A.
    Rickert, Karl
    Mann, J. Matthew
    Winn, Barry
    Abernathy, Douglas L.
    Manley, Michael E.
    Hurley, David H.
    Marianetti, Chris A.
    PHYSICAL REVIEW B, 2022, 106 (01)
  • [48] ATTRACTIVE PROPERTIES VIA GENERALIZED DERIVATIVES OF CONTINUOUS-FUNCTIONS
    BRUCKNER, AM
    BUCZOLICH, Z
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1992, 42 (02) : 271 - 278
  • [49] On Comparative Analysis for the Black-Scholes Model in the Generalized Fractional Derivatives Sense via Jafari Transform
    Rashid, Saima
    Sultana, Sobia
    Ashraf, Rehana
    Kaabar, Mohammed K. A.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [50] Commutator estimates with fractional derivatives and local existence for the generalized MHD equations
    Zaihong Jiang
    Caochuan Ma
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72