On (local) analysis of multifunctions via subspaces contained in graphs of generalized derivatives

被引:9
|
作者
Gfrerer, Helmut [1 ]
Outrata, Jiri, V [2 ,3 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Czech Acad Sci, Inst Informat Theory & Automat, Prague 18208, Czech Republic
[3] Federat Univ Australia, Ctr Informat & Appl Optimizat, POB 663, Ballarat, Vic 3350, Australia
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
Generalized derivatives; Second-order theory; Strong metric (sub)regularity; Semismoothness*; METRIC REGULARITY; TILT STABILITY; SUBREGULARITY; LIPSCHITZIAN; THEOREMS;
D O I
10.1016/j.jmaa.2021.125895
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with a comprehensive theory of mappings, whose local behavior can be described by means of linear subspaces, contained in the graphs of two (primal and dual) generalized derivatives. This class of mappings includes the graphically Lipschitzian mappings and thus a number of multifunctions, frequently arising in optimization and equilibrium problems. The developed theory makes use of new generalized derivatives, provides us with some calculus rules and reveals a number of interesting connections. In particular, it enables us to construct a modification of the semismooth* Newton method with improved convergence properties and to derive a generalization of Clarke's Inverse Function Theorem to multifunctions together with new efficient characterizations of strong metric (sub)regularity and tilt stability.(c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:37
相关论文
共 50 条
  • [21] An Efficient Implementation of the Gauss-Newton Method Via Generalized Krylov Subspaces
    Buccini, A.
    de Alba, P. Diaz
    Pes, F.
    Reichel, L.
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
  • [22] An expanded analysis of local fractionalintegral inequalities via generalized (s,P)-convexity
    Li, Hong
    Lakhdari, Abdelghani
    Jarad, Fahd
    Xu, Hongyan
    Meftah, Badreddine
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [23] A class of generalized symplectic graphs based on totally isotropic subspaces in symplectic spaces over finite fields
    Huo, Lijun
    Cheng, Weidong
    FILOMAT, 2024, 38 (10) : 3651 - 3663
  • [24] Rejoinder on: Data integration via analysis of subspaces (DIVAS)
    Prothero, Jack
    Jiang, Meilei
    Hannig, Jan
    Tran-Dinh, Quoc
    Ackerman, Andrew
    Marron, J. S.
    TEST, 2024, 33 (03) : 693 - 696
  • [25] Comments on: Data integration via analysis of subspaces (DIVAS)
    Zhou, Ling
    Song, Peter X. K.
    TEST, 2024, 33 (03) : 689 - 692
  • [26] A local analysis of imprimitive symmetric graphs
    Zhou, SM
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2005, 22 (04) : 435 - 449
  • [27] A Local Analysis of Imprimitive Symmetric Graphs
    Sanming Zhou
    Journal of Algebraic Combinatorics, 2005, 22 : 435 - 449
  • [28] NONLINEAR ANALYSIS VIA GRAPHS AND CONSTRUCTION OF REGULAR GRAPHS
    HEMAMI, H
    SIAM REVIEW, 1967, 9 (01) : 151 - &
  • [29] Decompositions of complete multipartite graphs via generalized graceful labelings
    Benini, Anna
    Pasotti, Anita
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 120 - 143
  • [30] Maximum generalized local connectivities of cubic Cayley graphs on Abelian groups
    Sun, Yuefang
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 94 : 227 - 236