Approximate Learning Algorithm for Restricted Boltzmann Machines

被引:5
|
作者
Yasuda, Muneki [1 ]
Tanaka, Kazuyuki [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
D O I
10.1109/CIMCA.2008.57
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A restricted Boltzmann machine consists of a layer of visible units and a layer of hidden units with no visible-visible or hidden-hidden connections. The restricted Boltzmann machine is the main component used in building up the deep belief network and has been studied by many researchers. However, the learning algorithm for the restricted Boltzmann machine is a NP-hard problem in general. In this paper we propose a new approximate learning algorithm for the restricted Boltzmann machines using the EM algorithm and the loopy belief propagation.
引用
收藏
页码:692 / 697
页数:6
相关论文
共 50 条
  • [41] Approximate inference in Boltzmann machines
    Welling, M
    Teh, YW
    [J]. ARTIFICIAL INTELLIGENCE, 2003, 143 (01) : 19 - 50
  • [42] Training Restricted Boltzmann Machines
    Fischer, Asja
    [J]. KUNSTLICHE INTELLIGENZ, 2015, 29 (04): : 441 - 444
  • [43] An Overview of Restricted Boltzmann Machines
    Vidyadhar Upadhya
    P. S. Sastry
    [J]. Journal of the Indian Institute of Science, 2019, 99 : 225 - 236
  • [44] Continuous restricted Boltzmann machines
    Robert W. Harrison
    [J]. Wireless Networks, 2022, 28 : 1263 - 1267
  • [45] Fuzzy Restricted Boltzmann Machines
    Harrison, Robert W.
    Freas, Christopher
    [J]. FUZZY LOGIC IN INTELLIGENT SYSTEM DESIGN: THEORY AND APPLICATIONS, 2018, 648 : 392 - 398
  • [46] An approach to improve online sequential extreme learning machines using restricted Boltzmann machines
    Pacheco, Andre G. C.
    Krohling, Renato A.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [47] Unsupervised hierarchical clustering using the learning dynamics of restricted Boltzmann machines
    Decelle, Aurelien
    Seoane, Beatriz
    Rosset, Lorenzo
    [J]. PHYSICAL REVIEW E, 2023, 108 (01)
  • [48] LEARNING INVARIANT COLOR FEATURES WITH SPARSE TOPOGRAPHIC RESTRICTED BOLTZMANN MACHINES
    Goh, Hanlin
    Kusmierz, Lukasz
    Lim, Joo-Hwee
    Thome, Nicolas
    Cord, Matthieu
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1241 - 1244
  • [49] A dynamical mean-field theory for learning in restricted Boltzmann machines
    Cakmak, Burak
    Opper, Manfred
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (10):
  • [50] LEARNING A BETTER REPRESENTATION OF SPEECH SOUNDWAVES USING RESTRICTED BOLTZMANN MACHINES
    Jaitly, Navdeep
    Hinton, Geoffrey
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 5884 - 5887