On a model of phase relaxation for the hyperbolic Stefan problem

被引:2
|
作者
Recupero, V [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, Trento, Italy
关键词
Stefan problem; phase relaxation; heat flux law; nonlinear PDEs;
D O I
10.1016/j.jmaa.2004.06.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a model of phase relaxation for the Stefan problem with the Cattaneo Maxwell heat flux law. We prove an existence and uniqueness result for the resulting problem and we show that its solution converges to the solution of the Stefan problem as the two relaxation parameters go to zero, provided a relation between these parameters holds. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:387 / 407
页数:21
相关论文
共 50 条
  • [41] FUZZY ONE-PHASE STEFAN PROBLEM
    Ivaz, K.
    Fazlallahi, M. Asadpour
    Khastan, A.
    Nieto, J. J.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (01) : 66 - 79
  • [42] A NONLOCAL TWO-PHASE STEFAN PROBLEM
    Chasseigne, Emmanuel
    Sastre-Gomez, Silvia
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (11-12) : 1335 - 1360
  • [43] Fourier law, phase transitions, and the Stefan problem
    Presutti, Errico
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 123 - 133
  • [44] The one-phase fractional Stefan problem
    del Teso, Felix
    Endal, Jorgen
    Luis Vazquez, Juan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (01): : 83 - 131
  • [45] ON A ONE-PHASE NONSTATIONARY STEFAN PROBLEM
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (01): : 30 - 32
  • [46] TWO PHASE STEFAN PROBLEM WITH SMOOTHED ENTHALPY
    Azaiez, M.
    Jelassi, F.
    Brahim, M. Mint
    Shen, J.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (06) : 1625 - 1641
  • [47] A phase transition speed estimate in the Stefan problem
    Zheng, W
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 : 1341 - 1347
  • [48] Convergence of the two-phase Stefan problem to the one-phase problem
    Stoth, BE
    QUARTERLY OF APPLIED MATHEMATICS, 1997, 55 (01) : 113 - 126
  • [49] A one-phase inverse Stefan problem
    El Badia, A
    Moutazaim, F
    INVERSE PROBLEMS, 1999, 15 (06) : 1507 - 1522
  • [50] ONE-PHASE QUASILINEAR STEFAN PROBLEM
    BORODIN, MA
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (02): : 99 - 101