Convergence of the two-phase Stefan problem to the one-phase problem

被引:5
|
作者
Stoth, BE [1 ]
机构
[1] UNIV BONN,INST ANGEW MATH,D-5300 BONN,GERMANY
关键词
D O I
10.1090/qam/1433755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the limit of the one-dimensional Stefan problem as the diffusivity coefficient of the solid phase approaches zero. We derive a weak formulation of the equilibrium condition for the resulting one-phase problem that allows jumps of the temperature across the interface. The weak formulation consists of a regularity condition that only enforces the usual equilibrium condition to hold from the liquid phase. At the end we briefly discuss the radial problem in higher space dimensions. The main tools in order to prove the convergence are the uniform bounds on the total variation of the free boundary that are derived using a regularized problem, where the equilibrium condition is substituted by a dynamical condition.
引用
下载
收藏
页码:113 / 126
页数:14
相关论文
共 50 条
  • [1] FUZZY ONE-PHASE STEFAN PROBLEM
    Ivaz, K.
    Fazlallahi, M. Asadpour
    Khastan, A.
    Nieto, J. J.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (01) : 66 - 79
  • [2] The one-phase fractional Stefan problem
    del Teso, Felix
    Endal, Jorgen
    Luis Vazquez, Juan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (01): : 83 - 131
  • [3] ON A ONE-PHASE NONSTATIONARY STEFAN PROBLEM
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (01): : 30 - 32
  • [4] ON REARRANGEMENT IN ONE-PHASE STEFAN PROBLEM
    NABOKOV, RY
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (02): : 59 - 61
  • [5] A GENERAL ONE-PHASE STEFAN PROBLEM
    SHERMAN, B
    QUARTERLY OF APPLIED MATHEMATICS, 1970, 28 (03) : 377 - &
  • [6] A one-phase inverse Stefan problem
    El Badia, A
    Moutazaim, F
    INVERSE PROBLEMS, 1999, 15 (06) : 1507 - 1522
  • [7] ONE-PHASE QUASILINEAR STEFAN PROBLEM
    BORODIN, MA
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (02): : 99 - 101
  • [8] SOME ASPECTS OF ONE-PHASE STEFAN PROBLEM
    CAFFARELLI, LA
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (01) : 73 - 77
  • [9] On a one-phase Stefan problem in nonlinear conduction
    Lillo S.D.
    Salvatori M.C.
    Journal of Nonlinear Mathematical Physics, 2002, 9 (4) : 446 - 454
  • [10] Backstepping Control of the One-Phase Stefan Problem
    Koga, Shumon
    Diagne, Mamadou
    Tang, Shuxia
    Krstic, Miroslav
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 2548 - 2553