Backstepping Control of the One-Phase Stefan Problem

被引:0
|
作者
Koga, Shumon [1 ]
Diagne, Mamadou [2 ]
Tang, Shuxia [1 ]
Krstic, Miroslav [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
关键词
BOUNDARY GEOMETRIC CONTROL; PARABOLIC PDE SYSTEMS; FEEDBACK-CONTROL; ROBUST-CONTROL; STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a backstepping control of the onephase Stefan Problem, which is a 1-D diffusion Partial Differential Equation (POE) defined on a time varying spatial domain described by an ordinary differential equation (ODE), is studied. A new nonlinear backstepping transformation for moving boundary problem is utilized to transform the original coupled POE-ODE system into a target system whose exponential stability is proved. The full-state boundary feedback controller ensures the exponential stability of the moving interface to a reference setpoint and the HI-norm of the distributed temperature by a choice of the setpint satisfying given explicit inequality between initial states that guarantees the physical constraints imposed by the melting process.
引用
收藏
页码:2548 / 2553
页数:6
相关论文
共 50 条
  • [1] Control and State Estimation of the One-Phase Stefan Problem via Backstepping Design
    Koga, Shumon
    Diagne, Mamadou
    Krstic, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) : 510 - 525
  • [2] Output Feedback Control of the One-Phase Stefan Problem
    Koga, Shumon
    Diagne, Mamadou
    Krstic, Miroslav
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 526 - 531
  • [3] FUZZY ONE-PHASE STEFAN PROBLEM
    Ivaz, K.
    Fazlallahi, M. Asadpour
    Khastan, A.
    Nieto, J. J.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (01) : 66 - 79
  • [4] The one-phase fractional Stefan problem
    del Teso, Felix
    Endal, Jorgen
    Luis Vazquez, Juan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (01): : 83 - 131
  • [5] ON A ONE-PHASE NONSTATIONARY STEFAN PROBLEM
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (01): : 30 - 32
  • [6] ON REARRANGEMENT IN ONE-PHASE STEFAN PROBLEM
    NABOKOV, RY
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (02): : 59 - 61
  • [7] A one-phase inverse Stefan problem
    El Badia, A
    Moutazaim, F
    INVERSE PROBLEMS, 1999, 15 (06) : 1507 - 1522
  • [8] ONE-PHASE QUASILINEAR STEFAN PROBLEM
    BORODIN, MA
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (02): : 99 - 101
  • [9] A GENERAL ONE-PHASE STEFAN PROBLEM
    SHERMAN, B
    QUARTERLY OF APPLIED MATHEMATICS, 1970, 28 (03) : 377 - &
  • [10] SOME ASPECTS OF ONE-PHASE STEFAN PROBLEM
    CAFFARELLI, LA
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (01) : 73 - 77