A Rolling Bearing Fault Diagnosis Method Based on Enhanced Integrated Filter Network

被引:1
|
作者
Wu, Kang [1 ,2 ]
Tao, Jie [1 ]
Yang, Dalian [3 ]
Xie, Hu [1 ,2 ]
Li, Zhiying [1 ,2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Hunan Key Lab Serv Comp & Novel Software Technol, Xiangtan 411201, Peoples R China
[3] Hunan Univ Sci & Technol, Hunan Prov Key Lab Hlth Maintenance Mech Equipmen, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; enhanced integrated filter; vector neuron; dynamic routing;
D O I
10.3390/machines10060481
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming at the difficulty of rolling bearing fault diagnosis in a strong noise environment, this paper proposes an enhanced integrated filter network. In the method, we firstly design an enhanced integrated filter, which includes the filter enhancement module and the expression enhancement module. The filter enhancement module can not only filter the high-frequency noise to extract useful features of medium and low-frequency signals but also maintain frequency and time resolution to some extent. On this basis, the expression enhancement module analyzes fault features intercepted by the upper network at multiple scales to get deep features. Then we introduce vector neurons to integrate scalar features into vector space, which mine the correlation between features. The feature vectors are transmitted by dynamic routing to establish the relationship between low-level capsules and high-level capsules. In order to verify the diagnostic performance of the model, CWRU and IMS bearing datasets are used for experimental verification. In the strong noise environment of SNR = -4 dB, the fault diagnosis precisions of the method on CWRU and IMS reach 94.85% and 92.45%, respectively. Compared with typical bearing fault diagnosis methods, the method has higher fault diagnosis precision and better generalization ability in a strong noise environment.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Fault diagnosis method of rolling bearing based on IMCKD and MCCNN
    Liu, Haobo
    Hao, Hongtao
    Ding, Wenjie
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (07): : 241 - 249
  • [42] Fault diagnosis method of rolling bearing based on attention mechanism
    Mao J.
    Guo Y.
    Zhao M.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (07): : 2233 - 2244
  • [43] Research on Fault Diagnosis Method of Rolling Bearing Based on TCN
    Zheng, Hua
    Wu, Zhenglong
    Duan, Shiqiang
    Chen, Yingxue
    2021 12TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING (ICMAE), 2021, : 489 - 493
  • [44] Fault diagnosis method of rolling bearing based on CLMD and CSES
    Huang C.
    Song H.
    Qin N.
    Chen X.
    Chai P.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2020, 40 (08): : 179 - 183
  • [45] New Fault Diagnosis Method for Rolling Bearing Based on PCA
    Xi Jianhui
    Han Yanzhe
    Su Ronghui
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4123 - 4127
  • [46] Gcforest-Based Fault Diagnosis Method For Rolling Bearing
    Liu, Qi
    Gao, Hongli
    You, Zhichao
    Song, Hongliang
    Zhang, Li
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 572 - 577
  • [47] Rolling Bearing Fault Diagnosis Method Based on Adaptive Autogram
    Zheng J.
    Wang X.
    Pan H.
    Tong J.
    Liu Q.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2021, 32 (07): : 778 - 785and792
  • [48] An Improved Method Based on CEEMD for Fault Diagnosis of Rolling Bearing
    Li, Meijiao
    Wang, Huaqing
    Tang, Gang
    Yuan, Hongfang
    Yang, Yang
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [49] Rolling bearing fault diagnosis method based on EEMD and GBDBN
    Shang Z.
    Liu X.
    Liao X.
    Geng R.
    Gao M.
    Yun J.
    International Journal of Performability Engineering, 2019, 15 (01) : 230 - 240
  • [50] Fault Diagnosis of Rolling Bearing Based on a Priority Elimination Method
    Xiang, Chuan
    Zhou, Jiahui
    Han, Bing
    Li, Weichen
    Zhao, Hongge
    SENSORS, 2023, 23 (04)