A Rolling Bearing Fault Diagnosis Method Based on Enhanced Integrated Filter Network

被引:1
|
作者
Wu, Kang [1 ,2 ]
Tao, Jie [1 ]
Yang, Dalian [3 ]
Xie, Hu [1 ,2 ]
Li, Zhiying [1 ,2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Hunan Key Lab Serv Comp & Novel Software Technol, Xiangtan 411201, Peoples R China
[3] Hunan Univ Sci & Technol, Hunan Prov Key Lab Hlth Maintenance Mech Equipmen, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; enhanced integrated filter; vector neuron; dynamic routing;
D O I
10.3390/machines10060481
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming at the difficulty of rolling bearing fault diagnosis in a strong noise environment, this paper proposes an enhanced integrated filter network. In the method, we firstly design an enhanced integrated filter, which includes the filter enhancement module and the expression enhancement module. The filter enhancement module can not only filter the high-frequency noise to extract useful features of medium and low-frequency signals but also maintain frequency and time resolution to some extent. On this basis, the expression enhancement module analyzes fault features intercepted by the upper network at multiple scales to get deep features. Then we introduce vector neurons to integrate scalar features into vector space, which mine the correlation between features. The feature vectors are transmitted by dynamic routing to establish the relationship between low-level capsules and high-level capsules. In order to verify the diagnostic performance of the model, CWRU and IMS bearing datasets are used for experimental verification. In the strong noise environment of SNR = -4 dB, the fault diagnosis precisions of the method on CWRU and IMS reach 94.85% and 92.45%, respectively. Compared with typical bearing fault diagnosis methods, the method has higher fault diagnosis precision and better generalization ability in a strong noise environment.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Fault Diagnosis Method for the Rolling Bearing Based on Information Fusion and BP Neural Network
    Zhang, Jinmin
    Huang, Yinhua
    Wang, Siming
    MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4, 2012, 538-541 : 1956 - +
  • [32] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Zhang, Xiangyang
    Chen, Guo
    Hao, Tengfei
    He, Zhiyuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2307 - 2316
  • [33] A fault diagnosis method based on Auxiliary Classifier Generative Adversarial Network for rolling bearing
    Wu, Chunming
    Zeng, Zhou
    PLOS ONE, 2021, 16 (03):
  • [34] Convolutional neural network diagnosis method of rolling bearing fault based on casing signal
    Zhang X.
    Chen G.
    Hao T.
    He Z.
    Li X.
    Cheng Z.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (12): : 2729 - 2737
  • [35] Improved convolutional capsule network method for rolling bearing fault diagnosis
    Zhao X.-Q.
    Chai J.-X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2024, 37 (05): : 885 - 895
  • [36] Fault diagnosis method of rolling bearing based on improved MBCV method
    Wu, Chao
    Cui, Ling-Li
    Zhang, Jian-Yu
    Wang, Xin
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (04): : 942 - 948
  • [37] Fault diagnosis method of rolling bearing based on AdB value
    Wang, Peng
    Yuan, Yu
    Tian, Li
    Wang, Heng
    PROCEEDINGS OF THE ADVANCES IN MATERIALS, MACHINERY, ELECTRICAL ENGINEERING (AMMEE 2017), 2017, 114 : 67 - 71
  • [38] Fault diagnosis method of rolling bearing based on AFD algorithm
    Liang, Y., 1600, Chinese Academy of Railway Sciences (34):
  • [39] Rolling Bearing Fault Diagnosis Method Based on MCMF and SAIMFE
    Meng, Dejun
    Miao, Changyun.
    Li, Xianguo
    Shi, Jia
    Liu, Yi
    Li, Jie
    SHOCK AND VIBRATION, 2022, 2022
  • [40] A rolling bearing fault diagnosis method based on EMD and SSAE
    Wang F.-T.
    Deng G.
    Wang H.-T.
    Yu X.-G.
    Han Q.-K.
    Li H.-K.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2019, 32 (02): : 368 - 376