Automatic determination of primary electron beam parameters in Monte Carlo simulation

被引:41
|
作者
Pena, Javier [1 ]
Gonzalez-Castano, Diego M.
Gomez, Faustino
Sanchez-Doblado, Francisco
Hartmann, Guenther H.
机构
[1] Univ Santiago de Compostela, Fac Fis, Dept Fis Particulas, Santiago De Compostela, Spain
[2] Univ Seville, Fac Med, Dept Fisiol Med & Biofis, E-41009 Seville, Spain
[3] Hosp Univ Virgen Macarena, Seville, Spain
[4] Deutsch Krebsforschungszentrum, Abt Med Phys, D-6900 Heidelberg, Germany
关键词
Monte Carlo; linac simulation; FWHM determination;
D O I
10.1118/1.2514155
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In order to obtain realistic and reliable Monte Carlo simulations of medical linac photon beams, an accurate determination of the parameters that define the primary electron beam that hits the target is a fundamental step. In this work we propose a new methodology to commission photon beams in Monte Carlo simulations that ensures the reproducibility of a wide range of clinically useful fields. For such purpose accelerated Monte Carlo simulations of 2 X 2, 10 X 10, and 20 X 20 cm(2) fields at SSD=100 cm are carried out for several combinations of the primary electron beam mean energy and radial FWHM. Then, by performing a simultaneous comparison with the correspondent measurements for these same fields, the best combination is selected. This methodology has been employed to determine the characteristics of the primary electron beams that best reproduce a Siemens PRIMUS and a Varian 2100 CD machine in the Monte Carlo simulations. Excellent agreements were obtained between simulations and measurements for a wide range of field sizes. Because precalculated profiles are stored in databases, the whole commissioning process can be fully automated, avoiding manual fine-tunings. These databases can also be used to characterize any accelerators of the same model from different sites. (c) 2007 American Association of Physicists in Medicine.
引用
下载
收藏
页码:1076 / 1084
页数:9
相关论文
共 50 条
  • [41] Determination of converge parameters for Monte Carlo experiments in the simulation of the failure of bone tissue
    Ciaccia, Marco
    Mueller-Karger, Carmen
    Casanova, Euro
    San Antonio, Thalia
    2016 IEEE ECUADOR TECHNICAL CHAPTERS MEETING (ETCM), 2016,
  • [42] The PADME beam line Monte Carlo simulation
    Bossi, F.
    Branchini, P.
    Buonomo, B.
    Capirossi, V
    Caricato, A. P.
    Chiodini, G.
    De Sangro, R.
    Di Giulio, C.
    Domenici, D.
    Ferrarotto, F.
    Fiore, S.
    Finocchiaro, G.
    Foggetta, L. G.
    Frankenthal, A.
    Garattini, M.
    Georgiev, G.
    Ghigo, A.
    Gianotti, P.
    Iazzi, F.
    Ivanov, S.
    Ivanov, Sv
    Kozhuharov, V
    Leonardi, E.
    Long, E.
    Martino, M.
    Oceano, I
    Oliva, F.
    Organtini, G. C.
    Pinna, F.
    Piperno, G.
    Raggi, M.
    Sarra, I
    Simeonov, R.
    Spadaro, T.
    Spagnolo, S.
    Spiriti, E.
    Tagnani, D.
    Taruggi, C.
    Valente, P.
    Variola, A.
    Vilucchi, E.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [43] The PADME beam line Monte Carlo simulation
    F. Bossi
    P. Branchini
    B. Buonomo
    V. Capirossi
    A. P. Caricato
    G. Chiodini
    R. De Sangro
    C. Di Giulio
    D. Domenici
    F. Ferrarotto
    S. Fiore
    G. Finocchiaro
    L. G. Foggetta
    A. Frankenthal
    M. Garattini
    G. Georgiev
    A. Ghigo
    P. Gianotti
    F. Iazzi
    S. Ivanov
    Sv. Ivanov
    V. Kozhuharov
    E. Leonardi
    E. Long
    M. Martino
    I. Oceano
    F. Oliva
    G. C. Organtini
    F. Pinna
    G. Piperno
    M. Raggi
    I. Sarra
    R. Simeonov
    T. Spadaro
    S. Spagnolo
    E. Spiriti
    D. Tagnani
    C. Taruggi
    P. Valente
    A. Variola
    E. Vilucchi
    Journal of High Energy Physics, 2022
  • [45] Determination of diffusion coefficients in degenerate electron gas using Monte Carlo simulation
    Thobel, JL
    Sleiman, A
    Fauquembergue, R
    JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) : 1220 - 1226
  • [46] Determination of simulation parameters in Monte Carlo ray tracing for radiative flux density distribution simulation
    Liu, Zengqiang
    Lin, Xiaoxia
    Zhao, Yuhong
    Feng, Jieqing
    ENERGY, 2023, 276
  • [47] MONTE CARLO ANALYSIS OF THE NEO BEAM ELECTRON BEAM FACILITY
    Messenger, S. R.
    Warner, J. H.
    Trautz, K.
    Uribe, R.
    Walters, R. J.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [48] MONTE-CARLO ELECTRON TRAJECTORY SIMULATION OF BEAM SPREADING IN THIN FOIL TARGETS
    NEWBURY, DE
    MYKLEBUST, RL
    ULTRAMICROSCOPY, 1978, 3 (04) : 391 - 395
  • [49] A particle-in-cell Monte Carlo code for electron beam ion source simulation
    Zhao, L.
    Cluggish, B.
    Kim, J. S.
    Evstatiev, E. G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02):
  • [50] Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam
    Jung, Seung-Tae
    Pyo, Seong-Hwan
    Kang, Won-Gu
    Kim, Yu-Ri
    Kim, Jin-Kyu
    Kang, Chang M.
    Nho, Young-Chang
    Park, Jong-Seok
    RADIATION PHYSICS AND CHEMISTRY, 2021, 186