Automatic determination of primary electron beam parameters in Monte Carlo simulation

被引:41
|
作者
Pena, Javier [1 ]
Gonzalez-Castano, Diego M.
Gomez, Faustino
Sanchez-Doblado, Francisco
Hartmann, Guenther H.
机构
[1] Univ Santiago de Compostela, Fac Fis, Dept Fis Particulas, Santiago De Compostela, Spain
[2] Univ Seville, Fac Med, Dept Fisiol Med & Biofis, E-41009 Seville, Spain
[3] Hosp Univ Virgen Macarena, Seville, Spain
[4] Deutsch Krebsforschungszentrum, Abt Med Phys, D-6900 Heidelberg, Germany
关键词
Monte Carlo; linac simulation; FWHM determination;
D O I
10.1118/1.2514155
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In order to obtain realistic and reliable Monte Carlo simulations of medical linac photon beams, an accurate determination of the parameters that define the primary electron beam that hits the target is a fundamental step. In this work we propose a new methodology to commission photon beams in Monte Carlo simulations that ensures the reproducibility of a wide range of clinically useful fields. For such purpose accelerated Monte Carlo simulations of 2 X 2, 10 X 10, and 20 X 20 cm(2) fields at SSD=100 cm are carried out for several combinations of the primary electron beam mean energy and radial FWHM. Then, by performing a simultaneous comparison with the correspondent measurements for these same fields, the best combination is selected. This methodology has been employed to determine the characteristics of the primary electron beams that best reproduce a Siemens PRIMUS and a Varian 2100 CD machine in the Monte Carlo simulations. Excellent agreements were obtained between simulations and measurements for a wide range of field sizes. Because precalculated profiles are stored in databases, the whole commissioning process can be fully automated, avoiding manual fine-tunings. These databases can also be used to characterize any accelerators of the same model from different sites. (c) 2007 American Association of Physicists in Medicine.
引用
下载
收藏
页码:1076 / 1084
页数:9
相关论文
共 50 条
  • [21] Dose distribution for electron beam using Monte Carlo simulation with GATE
    Leste, J.
    Chauvin, M.
    Younes, T.
    Vieillevigne, L.
    Bardies, M.
    Franceries, X.
    Ferrand, R.
    Pierrat, N.
    Bartolucci, L.
    Simon, L.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S967 - S968
  • [22] Monte Carlo simulation and experiments of electron beam direct writing on curved
    Xie M.
    Liu J.
    Wang P.
    Zhang Y.
    Han L.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (18): : 2232 - 2240
  • [23] Monte Carlo simulation of Gauss-distribution beam spot in electron beam lithography
    Ren, L.M.
    Chen, B.Q.
    Weixi Jiagong Jishu/Microfabrication Technology, 2001, (03):
  • [24] Monte Carlo simulation of electron swarm parameters in O2
    Settaouti, A.
    Settaouti, L.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2007, 37 (03): : 335 - 341
  • [25] The effect of scattering foil parameters on electron-beam Monte Carlo calculations
    Bieda, MR
    Antolak, JA
    Hogstrom, KR
    MEDICAL PHYSICS, 2001, 28 (12) : 2527 - 2534
  • [26] Monte Carlo simulations to obtain several parameters required for electron beam dosimetry
    Muir, B.
    Rogers, D.
    McEwen, M.
    MEDICAL PHYSICS, 2012, 39 (07) : 4623 - 4623
  • [27] Prediction of electron beam parameters of a Monte Carlo model using machine learning
    Wagner, A.
    Boni, K. Brou
    Rault, E.
    Crop, F.
    Lacornerie, T.
    Van Gestel, D.
    Reynaert, N.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S716 - S717
  • [28] New approach of Monte Carlo simulation for low energy electron beam lithography
    Kim, SH
    Ham, YM
    Lee, W
    Chun, K
    MICROELECTRONIC ENGINEERING, 1998, 42 : 179 - 182
  • [29] MONTE-CARLO SIMULATION OF REGISTRATION SIGNALS FOR ELECTRON-BEAM MICROFABRICATION
    LIN, YC
    ADESIDA, I
    NEUREUTHER, AR
    APPLIED PHYSICS LETTERS, 1980, 36 (08) : 672 - 674
  • [30] Monte Carlo simulation of high-energy electron beam lithography process
    Pan, Jiang-Yong
    Zhou, Zai-Fa
    Gan, Qi
    Xu, Wen-Qin
    2013 13TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2013, : 622 - 626