Testing Categorical Moderators in Mixed-Effects Meta-analysis in the Presence of Heteroscedasticity

被引:44
|
作者
Rubio-Aparicio, Maria [1 ]
Antonio Lopez-Lopez, Jose [2 ]
Viechtbauer, Wolfgang [3 ]
Marin-Martinez, Fulgencio [4 ]
Botella, Juan [5 ]
Sanchez-Meca, Julio [4 ]
机构
[1] Univ Alicante, Alicante, Spain
[2] Univ Bristol, Bristol, Avon, England
[3] Maastricht Univ, Maastricht, Netherlands
[4] Univ Murcia, Murcia, Spain
[5] Autonomous Univ Madrid, Madrid, Spain
来源
JOURNAL OF EXPERIMENTAL EDUCATION | 2020年 / 88卷 / 02期
关键词
Meta-analysis; mixed-effects model; subgroup analyses; residual between-studies variance; EFFECTS META-REGRESSION; VARIANCE ESTIMATORS; HETEROGENEITY; ANOVA;
D O I
10.1080/00220973.2018.1561404
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Mixed-effects models can be used to examine the association between a categorical moderator and the magnitude of the effect size. Two approaches are available to estimate the residual between-studies variance, -namely, separate estimation within each category of the moderator versus pooled estimation across all categories. We examine, by means of a Monte Carlo simulation study, both approaches for estimation in combination with two methods, the Wald-type and F tests, to test the statistical significance of the moderator. Results suggest that the F test using a pooled estimate of across categories is the best option in most conditions, although the F test using separate estimates of is preferable if the residual heterogeneity variances are heteroscedastic.
引用
收藏
页码:288 / 310
页数:23
相关论文
共 50 条
  • [31] A Meta-Analysis of Accommodation Effects for English Learners: Considering Possible Moderators
    Marinho, Nathalie L.
    Witmer, Sara E.
    Jess, Nicole
    Roschmann, Sarina
    LANGUAGE ASSESSMENT QUARTERLY, 2023, 20 (03) : 296 - 318
  • [32] Team Learning Behaviors and Performance: A Meta-Analysis of Direct Effects and Moderators
    Wiese, Christopher W.
    Burke, C. Shawn
    Tang, Yichen
    Hernandez, Claudia
    Howell, Ryan
    GROUP & ORGANIZATION MANAGEMENT, 2022, 47 (03) : 571 - 611
  • [33] TESTING FOR AND AGAINST AN ORDER RESTRICTION IN MIXED-EFFECTS MODELS
    SINGH, B
    WRIGHT, FT
    STATISTICS & PROBABILITY LETTERS, 1990, 9 (02) : 195 - 200
  • [34] A SIMULATION STUDY ON DUNNETT TEST ROBUSTNESS TO GROUP SIZE AND HETEROSCEDASTICITY IN LINEAR MIXED-EFFECTS MODELS
    Agbangba, Codjo Emile
    Tchando, Sika Fidele
    Gongnet, Emmanuel Ehnon
    JP JOURNAL OF BIOSTATISTICS, 2024, 24 (03) : 555 - 572
  • [35] Experimental disclosure and its moderators: A meta-analysis
    Frattaroli, Joanne.
    PSYCHOLOGICAL BULLETIN, 2006, 132 (06) : 823 - 865
  • [36] The power of statistical tests for moderators in meta-analysis
    Hedges, LV
    Pigott, TD
    PSYCHOLOGICAL METHODS, 2004, 9 (04) : 426 - 445
  • [37] Correlation between single-nucleotide polymorphisms and statin-induced myopathy: a mixed-effects model meta-analysis
    Xiang, Qian
    Zhang, Xiao-Dan
    Mu, Guang-Yan
    Wang, Zhe
    Liu, Zhi-Yan
    Xie, Qiu-Fen
    Hu, Kun
    Zhang, Zhuo
    Ma, Ling-Yue
    Jiang, Jie
    Cui, Yi-Min
    EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 2021, 77 (04) : 569 - 581
  • [38] Correlation between single-nucleotide polymorphisms and statin-induced myopathy: a mixed-effects model meta-analysis
    Qian Xiang
    Xiao-Dan Zhang
    Guang-Yan Mu
    Zhe Wang
    Zhi-Yan Liu
    Qiu-Fen Xie
    Kun Hu
    Zhuo Zhang
    Ling-Yue Ma
    Jie Jiang
    Yi-Min Cui
    European Journal of Clinical Pharmacology, 2021, 77 : 569 - 581
  • [39] A Meta-Analysis into Multiscreening and Advertising Effectiveness: Direct Effects, Moderators, and Underlying Mechanisms
    Segijn, Claire M.
    Eisend, Martin
    JOURNAL OF ADVERTISING, 2019, 48 (03) : 313 - 332
  • [40] Moderators of nocebo effects in controlled experiments: A multi-level meta-analysis
    Stein, Madeline, V
    Heller, Monika
    Hughes, Natasha
    Marr, Danielle
    Brake, Benjamin
    Chapman, Sarah
    Rubin, G. James
    Terhune, Devin B.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2025, 172