Testing Categorical Moderators in Mixed-Effects Meta-analysis in the Presence of Heteroscedasticity

被引:44
|
作者
Rubio-Aparicio, Maria [1 ]
Antonio Lopez-Lopez, Jose [2 ]
Viechtbauer, Wolfgang [3 ]
Marin-Martinez, Fulgencio [4 ]
Botella, Juan [5 ]
Sanchez-Meca, Julio [4 ]
机构
[1] Univ Alicante, Alicante, Spain
[2] Univ Bristol, Bristol, Avon, England
[3] Maastricht Univ, Maastricht, Netherlands
[4] Univ Murcia, Murcia, Spain
[5] Autonomous Univ Madrid, Madrid, Spain
来源
JOURNAL OF EXPERIMENTAL EDUCATION | 2020年 / 88卷 / 02期
关键词
Meta-analysis; mixed-effects model; subgroup analyses; residual between-studies variance; EFFECTS META-REGRESSION; VARIANCE ESTIMATORS; HETEROGENEITY; ANOVA;
D O I
10.1080/00220973.2018.1561404
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Mixed-effects models can be used to examine the association between a categorical moderator and the magnitude of the effect size. Two approaches are available to estimate the residual between-studies variance, -namely, separate estimation within each category of the moderator versus pooled estimation across all categories. We examine, by means of a Monte Carlo simulation study, both approaches for estimation in combination with two methods, the Wald-type and F tests, to test the statistical significance of the moderator. Results suggest that the F test using a pooled estimate of across categories is the best option in most conditions, although the F test using separate estimates of is preferable if the residual heterogeneity variances are heteroscedastic.
引用
收藏
页码:288 / 310
页数:23
相关论文
共 50 条
  • [21] Mixed-Effects Poisson Regression Models for Meta-Analysis of Follow-Up Studies with Constant or Varying Durations
    Bagos, Pantelis G.
    Nikolopoulos, Georgios K.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2009, 5 (01):
  • [22] Effects of Habit and Intention on Behavior: Meta-Analysis and Test of Key Moderators
    Hagger, Martin S. S.
    Hamilton, Kyra
    Phipps, Daniel J. J.
    Protogerou, Cleo
    Zhang, Chun-Qing
    Girelli, Laura
    Mallia, Luca
    Lucidi, Fabio
    MOTIVATION SCIENCE, 2023, 9 (02) : 73 - 94
  • [23] Trust and Team Performance: A Meta-Analysis of Main Effects, Moderators, and Covariates
    De Jong, Bart A.
    Dirks, Kurt T.
    Gillespie, Nicole
    JOURNAL OF APPLIED PSYCHOLOGY, 2016, 101 (08) : 1134 - 1150
  • [24] Relationship between glucose infusion and milk protein concentration and yield in dairy cows: A mixed-effects meta-analysis
    Reyes, G. C.
    Ellis, J.
    Fox, M. K.
    Cant, J. P.
    JOURNAL OF DAIRY SCIENCE, 2022, 105 : 302 - 303
  • [25] A flexible approach to identify interaction effects between moderators in meta-analysis
    Li, Xinru
    Dusseldorp, Elise
    Meulman, Jacqueline J.
    RESEARCH SYNTHESIS METHODS, 2019, 10 (01) : 134 - 152
  • [26] Meta-analysis of genetic linkage to quantitative trait loci with study-specific covariates: A mixed-effects model
    Gu, C
    Province, M
    Rao, DC
    GENETIC EPIDEMIOLOGY, 1999, 17 : S599 - S604
  • [27] Moderators analysis in meta-analysis: Meta-regression and subgroups analysis
    Sanchez-Meca, Julio
    Botella, Juan
    CIRUGIA ESPANOLA, 2024, 102 (08): : 446 - 447
  • [28] A meta-analysis of parent training: Moderators and follow-up effects
    Lundahl, B
    Risser, HJ
    Lovejoy, MC
    CLINICAL PSYCHOLOGY REVIEW, 2006, 26 (01) : 86 - 104
  • [29] Prevention of chronic PTSD with early cognitive behavioral therapy. A meta-analysis using mixed-effects modeling
    Kliem, Soeren
    Kroeger, Christoph
    BEHAVIOUR RESEARCH AND THERAPY, 2013, 51 (11) : 753 - 761
  • [30] How robust is the association between smoking and depression in adults? A meta-analysis using linear mixed-effects models
    Luger, Tana M.
    Suls, Jerry
    Vander Weg, Mark W.
    ADDICTIVE BEHAVIORS, 2014, 39 (10) : 1418 - 1429