Exact solutions of the Gross-Pitaevskii equation for stable vortex modes in two-dimensional Bose-Einstein condensates

被引:65
|
作者
Wu, Lei [1 ]
Li, Lu [2 ]
Zhang, Jie-Fang [1 ]
Mihalache, Dumitru [3 ]
Malomed, Boris A. [4 ]
Liu, W. M. [5 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Zhejiang, Peoples R China
[2] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Shanxi, Peoples R China
[3] Horia Hulubei Natl Inst Phys & Nucl Engn, R-077125 Magurele, Romania
[4] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[5] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 06期
基金
中国国家自然科学基金;
关键词
NONLINEAR SCHRODINGER-EQUATION; OPTICAL LATTICES; DARK SOLITONS;
D O I
10.1103/PhysRevA.81.061805
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We construct exact solutions of the Gross-Pitaevskii equation for solitary vortices, and approximate ones for fundamental solitons, in two-dimensional models of Bose-Einstein condensates with a spatially modulated nonlinearity of either sign and a harmonic trapping potential. The number of vortex-soliton (VS) modes is determined by the discrete energy spectrum of a related linear Schrodinger equation. The VS families in the system with the attractive and repulsive nonlinearity are mutually complementary. Stable VSs with vorticity S >= 2 and those corresponding to higher-order radial states are reported, in the case of the attraction and repulsion, respectively.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] The Gross-Pitaevskii equation and Bose-Einstein condensates
    Rogel-Salazar, J.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (02) : 247 - 257
  • [2] Gravity, Bose-Einstein condensates and Gross-Pitaevskii equation
    Das Gupta, Patrick
    [J]. CURRENT SCIENCE, 2015, 109 (11): : 1946 - 1950
  • [3] Energy-dependent scattering and the Gross-Pitaevskii equation in two-dimensional Bose-Einstein condensates
    Lee, MD
    Morgan, SA
    Davis, MJ
    Burnett, K
    [J]. PHYSICAL REVIEW A, 2002, 65 (04): : 10
  • [4] Dynamics of Solutions to the Gross-Pitaevskii Equation Describing Dipolar Bose-Einstein Condensates
    Bellazzini, Jacopo
    Forcella, Luigi
    [J]. QUALITATIVE PROPERTIES OF DISPERSIVE PDES, 2022, 52 : 25 - 57
  • [5] Bose-Einstein condensates: Analytical methods for the Gross-Pitaevskii equation
    Trallero-Giner, Carlos
    Drake, J.
    Lopez-Richard, V.
    Trallero-Herrero, C.
    Birman, Joseph L.
    [J]. PHYSICS LETTERS A, 2006, 354 (1-2) : 115 - 118
  • [6] Bose-Einstein condensates and the numerical solution of the Gross-Pitaevskii equation
    Succi, S
    Toschi, F
    Tosi, MP
    Vignolo, P
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2005, 7 (06) : 48 - 57
  • [7] GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES
    Brennecke, Christian
    Schlein, Benjamin
    [J]. ANALYSIS & PDE, 2019, 12 (06): : 1513 - 1596
  • [8] Stochastic Gross-Pitaevskii Equation for the Dynamical Thermalization of Bose-Einstein Condensates
    Savenko, I. G.
    Liew, T. C. H.
    Shelykh, I. A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [9] Soliton Solutions and Collisions for the Multicomponent Gross-Pitaevskii Equation in Spinor Bose-Einstein Condensates
    Wang, Ming
    He, Guo-Liang
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [10] LOD-MS for Gross-Pitaevskii Equation in Bose-Einstein Condensates
    Kong, Linghua
    Hong, Jialin
    Zhang, Jingjing
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (01) : 219 - 241